我是靠谱客的博主 妩媚芒果,最近开发中收集的这篇文章主要介绍Java线程不安全集合类解决办法以及JDK1.7与1.8ConcurrentHashMap之间的区别,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

参考: 

https://www.cnblogs.com/chengxiao/p/6842045.html

https://blog.csdn.net/u010723709/article/details/48007881

https://blog.csdn.net/bill_xiang_/article/details/81122044

以前文章传送门:

jdk1.7及之前的HashMap:https://blog.csdn.net/sltylzx/article/details/84888630

jdk7和jdk8HashMap主要的区别:https://blog.csdn.net/sltylzx/article/details/86766164

1.ArrayList

[1].代码

List<String> list = new ArrayList<>();

for (int i = 0 ; i < 30 ; i++){

    new Thread(() ->{

        list.add(UUID.randomUUID().toString().substring(0,8));

        System.out.println(list);

    },"threadName" + i).start();

}

[2].异常:Exception in thread "threadName11" java.util.ConcurrentModificationException

[3].解决方案

①.Vector

②.Connections.synchronizedList(List<T> list)

③.CopyOnWriteArrayList<E>:写时复制

[4].CopyOnWriteArrayList分析

①.源码

/**

* Appends the specified element to the end of this list.

*

* @param e element to be appended to this list

* @return {@code true} (as specified by {@link Collection#add})

*/

public boolean add(E e) {

    final ReentrantLock lock = this.lock;

    lock.lock();

    try {

        Object[] elements = getArray();

        int len = elements.length;

        Object[] newElements = Arrays.copyOf(elements, len + 1);

        newElements[len] = e;

        setArray(newElements);

        return true;

    } finally {

        lock.unlock();

    }

}

②.原理

CopyOnWrite容器即写时复制的容器,往一个容器添加元素的时候,不直接往当前容器Object[]添加,而是先将当前容器Object[],进行copy,复制出一个新的容器Object[] newElements,然后往新的容器中添加数据,添加完之后再将原容器的引用指向新的容器setArray(newElements)。这样做的好处就是可以对CopyOnwrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素,所以CopyOnWrite容器也是一种读写分离思想,读和写不同的容器

2.HashSet

[1].代码

package com.w4xj.interview.thread;



import java.util.HashSet;

import java.util.Set;

import java.util.UUID;



/**

* @Author by w4xj

* @Classname HashSetNotSafe

* @Description TODO

* @Date 2019/5/5 12:47

* @Created by IDEA

*/

public class HashSetNotSafe {

    public static void main(String[] args) {

        Set<String> set = new HashSet<>();

        for (int i = 0 ; i < 30 ; i++){

            new Thread(() ->{

                set.add(UUID.randomUUID().toString().substring(0,8));

                System.out.println(set);

            },"threadName" + i).start();

        }

    }

}

[2].异常同样是java.util.ConcurrentModificationException

[3].解决方式也类似

Collection.synchronizedSet

CopyOnWriteArraySet

[4].另外提一下:HashSet底层就是HashMap实现,以Set的值作为key,一个Object的常量PRESENT作为value

public class HashSet<E>

    extends AbstractSet<E>

    implements Set<E>, Cloneable, java.io.Serializable

{

    static final long serialVersionUID = -5024744406713321676L;



    private transient HashMap<E,Object> map;



    // Dummy value to associate with an Object in the backing Map

    private static final Object PRESENT = new Object();




    /**

     * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has

     * default initial capacity (16) and load factor (0.75).

     */

    public HashSet() {

        map = new HashMap<>();

    }

    ....

    public boolean add(E e) {

       return map.put(e, PRESENT)==null;

    }

3.HashMap

[1].代码

package com.w4xj.interview.thread;





import java.util.HashMap;

import java.util.Map;

import java.util.UUID;



/**

* @Author by w4xj

* @Classname HashMapNotSafe

* @Description TODO

* @Date 2019/5/5 20:08

* @Created by IDEA

*/

public class HashMapNotSafe {

    public static void main(String[] args) {

        Map<String, Object> map = new HashMap<>();

        for (int i = 0 ; i < 30 ; i++){

            new Thread(() ->{

                map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0,8));

                System.out.println(map);

            },"threadName" + i).start();

        }

    }

}

[2].异常同样是java.util.ConcurrentModificationException

[3].解决方式也类似

Collection.synchronizedMap

ConcurrentHashMap(Spring底层就大量采用了ConcurrentHashMap)

[4].为什么不用HashTable

HashTable是线程安全的。但是HashTable线程安全的策略实现代价却太大,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。

[5].jdk1.7及之前的ConcurrentHashMap

①.解决问题:HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。

②.ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。

final Segment<K,V>[] segments;

③.Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,相比于HashTable一下就提升了十数倍性能)。所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。

④.Segment类似于HashMap,一个Segment维护着一个HashEntry数组

transient volatile HashEntry<K,V>[] table;

⑤.HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。

static final class HashEntry<K,V> {

        final int hash;

        final K key;

        volatile V value;

        volatile HashEntry<K,V> next;

        ...

}

⑥.Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap类似,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法

Segment(float lf, int threshold, HashEntry<K,V>[] tab) {

            this.loadFactor = lf;//负载因子

            this.threshold = threshold;//阈值

            this.table = tab;//主干数组即HashEntry数组

        }

⑦.ConcurrentHashMap的构造方法

public ConcurrentHashMap(int initialCapacity,

                               float loadFactor, int concurrencyLevel) {

          if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)

              throw new IllegalArgumentException();

          //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536

          if (concurrencyLevel > MAX_SEGMENTS)

              concurrencyLevel = MAX_SEGMENTS;

          //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5

         int sshift = 0;

         //ssize 为segments数组长度,根据concurrentLevel计算得出

         int ssize = 1;

         while (ssize < concurrencyLevel) {

             ++sshift;

             ssize <<= 1;

         }

         //segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲

         this.segmentShift = 32 - sshift;

         this.segmentMask = ssize - 1;

         if (initialCapacity > MAXIMUM_CAPACITY)

             initialCapacity = MAXIMUM_CAPACITY;

         //计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.

         int c = initialCapacity / ssize;

         if (c * ssize < initialCapacity)

             ++c;

         int cap = MIN_SEGMENT_TABLE_CAPACITY;

         while (cap < c)

             cap <<= 1;

         //创建segments数组并初始化第一个Segment,其余的Segment延迟初始化

         Segment<K,V> s0 =

             new Segment<K,V>(loadFactor, (int)(cap * loadFactor),

                              (HashEntry<K,V>[])new HashEntry[cap]);

         Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];

         UNSAFE.putOrderedObject(ss, SBASE, s0);

         this.segments = ss;

     }

初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。这些都与HashMap一致

⑧.put方法

public V put(K key, V value) {

        Segment<K,V> s;

        //concurrentHashMap不允许key/value为空

        if (value == null)

            throw new NullPointerException();

        //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀

        int hash = hash(key);

        //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment

        int j = (hash >>> segmentShift) & segmentMask;

        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck

             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment

            s = ensureSegment(j);

        return s.put(key, hash, value, false);

    }

从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法。

⑨.于segmentShift和segmentMask

a.segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。b.segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性

c.segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。

⑩.get方法,无需加锁

public V get(Object key) {

        Segment<K,V> s;

        HashEntry<K,V>[] tab;

        int h = hash(key);

        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;

        //先定位Segment,再定位HashEntry

        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&

            (tab = s.table) != null) {

            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile

                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);

                 e != null; e = e.next) {

                K k;

                if ((k = e.key) == key || (e.hash == h && key.equals(k)))

                    return e.value;

            }

        }

        return null;

    }

⑪.concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {

            HashEntry<K,V> node = tryLock() ? null :

                scanAndLockForPut(key, hash, value);//tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),若找不到,则创建HashEntry。tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。

            V oldValue;

            try {

                HashEntry<K,V>[] tab = table;

                int index = (tab.length - 1) & hash;//定位HashEntry,可以看到,这个hash值在定位Segment时和在Segment中定位HashEntry都会用到,只不过定位Segment时只用到高几位。

                HashEntry<K,V> first = entryAt(tab, index);

                for (HashEntry<K,V> e = first;;) {

                    if (e != null) {

                        K k;

                        if ((k = e.key) == key ||

                            (e.hash == hash && key.equals(k))) {

                            oldValue = e.value;

                            if (!onlyIfAbsent) {

                                e.value = value;

                                ++modCount;

                            }

                            break;

                        }

                        e = e.next;

                    }

                    else {

                        if (node != null)

                            node.setNext(first);

                        else

                            node = new HashEntry<K,V>(hash, key, value, first);

                        int c = count + 1;

              //若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。这样可以最大程度避免之前散列好的entry重新散列,不赘述。扩容并rehash的这个过程是比较消耗资源的。

                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)

                            rehash(node);

                        else

                            setEntryAt(tab, index, node);

                        ++modCount;

                        count = c;

                        oldValue = null;

                        break;

                    }

                }

            } finally {

                unlock();

            }

            return oldValue;

        }

[6].jdk1.8中的ConcurrentHashMap

①.jdk1.8中的ConcurrentHashMap实现线程安全的思想也已经完全变了,它摒弃了之前Segment(锁段)的概念,而是CAS算法。它沿用了与它同时期的HashMap版本的思想,底层依然由“数组”+链表+红黑树的方式思想,但是为了做到并发,又增加了很多辅助的类,例如TreeBin,Traverser等对象内部类。

②.另外,JDK1.8中的ConcurrentHashMap中还包含一个重要属性sizeCtl,其是一个控制标识符,不同的值代表不同的意思:其为0时,表示hash表还未初始化,而为正数时这个数值表示初始化或下一次扩容的大小,相当于一个阈值;即如果hash表的实际大小>=sizeCtl,则进行扩容,默认情况下其是当前ConcurrentHashMap容量的0.75倍;而如果sizeCtl为-1,表示正在进行初始化操作;而为-N时,则表示有N-1个线程正在进行扩容。

③.Node是最核心的内部类,它包装了key-value键值对,所有插入ConcurrentHashMap的数据都包装在这里面。它与HashMap中的定义很相似,但是但是有一些差别它对value和next属性设置了volatile同步锁,它不允许调用setValue方法直接改变Node的value域,它增加了find方法辅助map.get()方法。

static class Node<K,V> implements Map.Entry<K,V> {

        final int hash;

        final K key;

        volatile V val;//带有同步锁的value

        volatile Node<K,V> next;//带有同步锁的next指针

        Node(int hash, K key, V val, Node<K,V> next) {

            this.hash = hash;

            this.key = key;

            this.val = val;

            this.next = next;

        }

        public final K getKey()       { return key; }

        public final V getValue()     { return val; }

        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }

        public final String toString(){ return key + "=" + val; }

        //不允许直接改变value的值

        public final V setValue(V value) {

            throw new UnsupportedOperationException();

        }

        public final boolean equals(Object o) {

            Object k, v, u; Map.Entry<?,?> e;

            return ((o instanceof Map.Entry) &&

                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&

                    (v = e.getValue()) != null &&

                    (k == key || k.equals(key)) &&

                    (v == (u = val) || v.equals(u)));

        }

        /**

         * Virtualized support for map.get(); overridden in subclasses.

         */

        Node<K,V> find(int h, Object k) {

            Node<K,V> e = this;

            if (k != null) {

                do {

                    K ek;

                    if (e.hash == h &&

                        ((ek = e.key) == k || (ek != null && k.equals(ek))))

                        return e;

                } while ((e = e.next) != null);

            }

            return null;

        }

    }

这个Node内部类与HashMap中定义的Node类很相似,但是有一些差别

它对value和next属性设置了volatile同步锁

它不允许调用setValue方法直接改变Node的value域

它增加了find方法辅助map.get()方法

④.TreeNode:树节点类,另外一个核心的数据结构。当链表长度过长的时候,会转换为TreeNode。但是与HashMap不相同的是,它并不是直接转换为红黑树,而是把这些结点包装成TreeNode放在TreeBin对象中,由TreeBin完成对红黑树的包装。而且TreeNode在ConcurrentHashMap集成自Node类,而并非HashMap中的集成自LinkedHashMap.Entry<K,V>类,也就是说TreeNode带有next指针,这样做的目的是方便基于TreeBin的访问。

/**

* Nodes for use in TreeBins

*/

static final class TreeNode<K,V> extends Node<K,V> {

    TreeNode<K,V> parent;  // red-black tree links

    TreeNode<K,V> left;

    TreeNode<K,V> right;

    TreeNode<K,V> prev;    // needed to unlink next upon deletion

    boolean red;





    TreeNode(int hash, K key, V val, Node<K,V> next,

             TreeNode<K,V> parent) {

        super(hash, key, val, next);

        this.parent = parent;

    }





    Node<K,V> find(int h, Object k) {

        return findTreeNode(h, k, null);

    }





    /**

     * Returns the TreeNode (or null if not found) for the given key

     * starting at given root.

     */

    final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {

        if (k != null) {

            TreeNode<K,V> p = this;

            do  {

                int ph, dir; K pk; TreeNode<K,V> q;

                TreeNode<K,V> pl = p.left, pr = p.right;

                if ((ph = p.hash) > h)

                    p = pl;

                else if (ph < h)

                    p = pr;

                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))

                    return p;

                else if (pl == null)

                    p = pr;

                else if (pr == null)

                    p = pl;

                else if ((kc != null ||

                          (kc = comparableClassFor(k)) != null) &&

                         (dir = compareComparables(kc, k, pk)) != 0)

                    p = (dir < 0) ? pl : pr;

                else if ((q = pr.findTreeNode(h, k, kc)) != null)

                    return q;

                else

                    p = pl;

            } while (p != null);

        }

        return null;

    }

}

⑤.TreeBin:这个类并不负责包装用户的key、value信息,而是包装的很多TreeNode节点。它代替了TreeNode的根节点,也就是说在实际的ConcurrentHashMap“数组”中,存放的是TreeBin对象,而不是TreeNode对象,这是与HashMap的区别。另外这个类还带有了读写锁。这里仅贴出它的构造方法。可以看到在构造TreeBin节点时,仅仅指定了它的hash值为TREEBIN常量,这也就是个标识为。同时也看到我们熟悉的红黑树构造方法

/**

         * Creates bin with initial set of nodes headed by b.

         */

        TreeBin(TreeNode<K,V> b) {

            super(TREEBIN, null, null, null);

            this.first = b;

            TreeNode<K,V> r = null;

            for (TreeNode<K,V> x = b, next; x != null; x = next) {

                next = (TreeNode<K,V>)x.next;

                x.left = x.right = null;

                if (r == null) {

                    x.parent = null;

                    x.red = false;

                    r = x;

                }

                else {

                    K k = x.key;

                    int h = x.hash;

                    Class<?> kc = null;

                    for (TreeNode<K,V> p = r;;) {

                        int dir, ph;

                        K pk = p.key;

                        if ((ph = p.hash) > h)

                            dir = -1;

                        else if (ph < h)

                            dir = 1;

                        else if ((kc == null &&

                                  (kc = comparableClassFor(k)) == null) ||

                                 (dir = compareComparables(kc, k, pk)) == 0)

                            dir = tieBreakOrder(k, pk);

                            TreeNode<K,V> xp = p;

                        if ((p = (dir <= 0) ? p.left : p.right) == null) {

                            x.parent = xp;

                            if (dir <= 0)

                                xp.left = x;

                            else

                                xp.right = x;

                            r = balanceInsertion(r, x);

                            break;

                        }

                    }

                }

            }

            this.root = r;

            assert checkInvariants(root);

        }

⑥.ForwardingNode:一个用于连接两个table的节点类。它包含一个nextTable指针,用于指向下一张表。而且这个节点的key value next指针全部为null,它的hash值为-1. 这里面定义的find的方法是从nextTable里进行查询节点,而不是以自身为头节点进行查找

/**

     * A node inserted at head of bins during transfer operations.

     */

    static final class ForwardingNode<K,V> extends Node<K,V> {

        final Node<K,V>[] nextTable;

        ForwardingNode(Node<K,V>[] tab) {

            super(MOVED, null, null, null);

            this.nextTable = tab;

        }

        Node<K,V> find(int h, Object k) {

            // loop to avoid arbitrarily deep recursion on forwarding nodes

            outer: for (Node<K,V>[] tab = nextTable;;) {

                Node<K,V> e; int n;

                if (k == null || tab == null || (n = tab.length) == 0 ||

                    (e = tabAt(tab, (n - 1) & h)) == null)

                    return null;

                for (;;) {

                    int eh; K ek;

                    if ((eh = e.hash) == h &&

                        ((ek = e.key) == k || (ek != null && k.equals(ek))))

                        return e;

                    if (eh < 0) {

                        if (e instanceof ForwardingNode) {

                            tab = ((ForwardingNode<K,V>)e).nextTable;

                            continue outer;

                        }

                        else

                            return e.find(h, k);

                    }

                    if ((e = e.next) == null)

                        return null;

                }

            }

        }

    }

⑦.ConcurrentHashMap定义了三个原子操作(方法),用于对指定位置的节点进行操作。正是这些原子操作保证了ConcurrentHashMap的线程安全。

@SuppressWarnings("unchecked")

    //获得在i位置上的Node节点

    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {

        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);

    }

        //利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少

        //在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改

        //因此当前线程中的值并不是最新的值,这种修改可能会覆盖掉其他线程的修改结果  有点类似于SVN

    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,

                                        Node<K,V> c, Node<K,V> v) {

        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);

    }

        //利用volatile方法设置节点位置的值

    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {

        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);

    }

⑧.初始化方法initTable:对于ConcurrentHashMap来说,调用它的构造方法仅仅是设置了一些参数而已。而整个table的初始化是在向ConcurrentHashMap中插入元素的时候发生的。如调用put、computeIfAbsent、compute、merge等方法的时候,调用时机是检查table==null。初始化方法主要应用了关键属性sizeCtl 如果这个值〈0,表示其他线程正在进行初始化,就放弃这个操作。在这也可以看出ConcurrentHashMap的初始化只能由一个线程完成。如果获得了初始化权限,就用CAS方法将sizeCtl置为-1,防止其他线程进入。初始化数组后,将sizeCtl的值改为0.75*n

/**

     * Initializes table, using the size recorded in sizeCtl.

     */

    private final Node<K,V>[] initTable() {

        Node<K,V>[] tab; int sc;

        while ((tab = table) == null || tab.length == 0) {

                //sizeCtl表示有其他线程正在进行初始化操作,把线程挂起。对于table的初始化工作,只能有一个线程在进行。

            if ((sc = sizeCtl) < 0)

                Thread.yield(); // lost initialization race; just spin

            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//利用CAS方法把sizectl的值置为-1 表示本线程正在进行初始化

                try {

                    if ((tab = table) == null || tab.length == 0) {

                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;

                        @SuppressWarnings("unchecked")

                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];

                        table = tab = nt;

                        sc = n - (n >>> 2);//相当于0.75*n 设置一个扩容的阈值

                    }

                } finally {

                    sizeCtl = sc;

                }

                break;

            }

        }

        return tab;

    }

⑨.扩容方法 transfer

a.当ConcurrentHashMap容量不足的时候,需要对table进行扩容。这个方法的基本思想跟HashMap是很像的,但是由于它是支持并发扩容的,所以要复杂的多。原因是它支持多线程进行扩容操作,而并没有加锁。我想这样做的目的不仅仅是为了满足concurrent的要求,而是希望利用并发处理去减少扩容带来的时间影响。因为在扩容的时候,总是会涉及到从一个“数组”到另一个“数组”拷贝的操作,如果这个操作能够并发进行,那真真是极好的了。

b.整个扩容操作分为两个部分

i.第一部分是构建一个nextTable,它的容量是原来的两倍,这个操作是单线程完成的。这个单线程的保证是通过RESIZE_STAMP_SHIFT这个常量经过一次运算来保证的,这个地方在后面会有提到;

ii.第二个部分就是将原来table中的元素复制到nextTable中,这里允许多线程进行操作。

c.先来看一下单线程是如何完成的:

它的大体思想就是遍历、复制的过程。首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素,如果这个位置为空,就在原table中的i位置放入forwardNode节点,这个也是触发并发扩容的关键点;如果这个位置是Node节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上,如果这个位置是TreeBin节点(fh<0),也做一个反序处理,并且判断是否需要untreefi,把处理的结果分别放在nextTable的i和i+n的位置上,遍历过所有的节点以后就完成了复制工作,这时让nextTable作为新的table,并且更新sizeCtl为新容量的0.75倍 ,完成扩容。

d.再看一下多线程是如何完成的:

在代码的69行有一个判断,如果遍历到的节点是forward节点,就向后继续遍历,再加上给节点上锁的机制,就完成了多线程的控制。多线程遍历节点,处理了一个节点,就把对应点的值set为forward,另一个线程看到forward,就向后遍历。这样交叉就完成了复制工作。而且还很好的解决了线程安全的问题。

  /**

     * 一个过渡的table表  只有在扩容的时候才会使用

     */

    private transient volatile Node<K,V>[] nextTable;

/**

     * Moves and/or copies the nodes in each bin to new table. See

     * above for explanation.

     */

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {

        int n = tab.length, stride;

        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)

            stride = MIN_TRANSFER_STRIDE; // subdivide range

        if (nextTab == null) {            // initiating

            try {

                @SuppressWarnings("unchecked")

                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];//构造一个nextTable对象 它的容量是原来的两倍

                nextTab = nt;

            } catch (Throwable ex) {      // try to cope with OOME

                sizeCtl = Integer.MAX_VALUE;

                return;

            }

            nextTable = nextTab;

            transferIndex = n;

        }

        int nextn = nextTab.length;

        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);//构造一个连节点指针 用于标志位

        boolean advance = true;//并发扩容的关键属性 如果等于true 说明这个节点已经处理过

        boolean finishing = false; // to ensure sweep before committing nextTab

        for (int i = 0, bound = 0;;) {

            Node<K,V> f; int fh;

            //这个while循环体的作用就是在控制i--  通过i--可以依次遍历原hash表中的节点

            while (advance) {

                int nextIndex, nextBound;

                if (--i >= bound || finishing)

                    advance = false;

                else if ((nextIndex = transferIndex) <= 0) {

                    i = -1;

                    advance = false;

                }

                else if (U.compareAndSwapInt

                         (this, TRANSFERINDEX, nextIndex,

                          nextBound = (nextIndex > stride ?

                                       nextIndex - stride : 0))) {

                    bound = nextBound;

                    i = nextIndex - 1;

                    advance = false;

                }

            }

            if (i < 0 || i >= n || i + n >= nextn) {

                int sc;

                if (finishing) {

                    //如果所有的节点都已经完成复制工作  就把nextTable赋值给table 清空临时对象nextTable

                    nextTable = null;

                    table = nextTab;

                    sizeCtl = (n << 1) - (n >>> 1);//扩容阈值设置为原来容量的1.5倍  依然相当于现在容量的0.75倍

                    return;

                }

                //利用CAS方法更新这个扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作

                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {

                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)

                        return;

                    finishing = advance = true;

                    i = n; // recheck before commit

                }

            }

            //如果遍历到的节点为空 则放入ForwardingNode指针

            else if ((f = tabAt(tab, i)) == null)

                advance = casTabAt(tab, i, null, fwd);

            //如果遍历到ForwardingNode节点  说明这个点已经被处理过了 直接跳过  这里是控制并发扩容的核心

            else if ((fh = f.hash) == MOVED)

                advance = true; // already processed

            else {

                    //节点上锁

                synchronized (f) {

                    if (tabAt(tab, i) == f) {

                        Node<K,V> ln, hn;

                        //如果fh>=0 证明这是一个Node节点

                        if (fh >= 0) {

                            int runBit = fh & n;

                            //以下的部分在完成的工作是构造两个链表  一个是原链表  另一个是原链表的反序排列

                            Node<K,V> lastRun = f;

                            for (Node<K,V> p = f.next; p != null; p = p.next) {

                                int b = p.hash & n;

                                if (b != runBit) {

                                    runBit = b;

                                    lastRun = p;

                                }

                            }

                            if (runBit == 0) {

                                ln = lastRun;

                                hn = null;

                            }

                            else {

                                hn = lastRun;

                                ln = null;

                            }

                            for (Node<K,V> p = f; p != lastRun; p = p.next) {

                                int ph = p.hash; K pk = p.key; V pv = p.val;

                                if ((ph & n) == 0)

                                    ln = new Node<K,V>(ph, pk, pv, ln);

                                else

                                    hn = new Node<K,V>(ph, pk, pv, hn);

                            }

                            //在nextTable的i位置上插入一个链表

                            setTabAt(nextTab, i, ln);

                            //在nextTable的i+n的位置上插入另一个链表

                            setTabAt(nextTab, i + n, hn);

                            //在table的i位置上插入forwardNode节点  表示已经处理过该节点

                            setTabAt(tab, i, fwd);

                            //设置advance为true 返回到上面的while循环中 就可以执行i--操作

                            advance = true;

                        }

                        //对TreeBin对象进行处理  与上面的过程类似

                        else if (f instanceof TreeBin) {

                            TreeBin<K,V> t = (TreeBin<K,V>)f;

                            TreeNode<K,V> lo = null, loTail = null;

                            TreeNode<K,V> hi = null, hiTail = null;

                            int lc = 0, hc = 0;

                            //构造正序和反序两个链表

                            for (Node<K,V> e = t.first; e != null; e = e.next) {

                                int h = e.hash;

                                TreeNode<K,V> p = new TreeNode<K,V>

                                    (h, e.key, e.val, null, null);

                                if ((h & n) == 0) {

                                    if ((p.prev = loTail) == null)

                                        lo = p;

                                    else

                                        loTail.next = p;

                                    loTail = p;

                                    ++lc;

                                }

                                else {

                                    if ((p.prev = hiTail) == null)

                                        hi = p;

                                    else

                                        hiTail.next = p;

                                    hiTail = p;

                                    ++hc;

                                }

                            }

                            //如果扩容后已经不再需要tree的结构 反向转换为链表结构

                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :

                                (hc != 0) ? new TreeBin<K,V>(lo) : t;

                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :

                                (lc != 0) ? new TreeBin<K,V>(hi) : t;

                             //在nextTable的i位置上插入一个链表    

                            setTabAt(nextTab, i, ln);

                            //在nextTable的i+n的位置上插入另一个链表

                            setTabAt(nextTab, i + n, hn);

                             //在table的i位置上插入forwardNode节点  表示已经处理过该节点

                            setTabAt(tab, i, fwd);

                            //设置advance为true 返回到上面的while循环中 就可以执行i--操作

                            advance = true;

                        }

                    }

                }

            }

        }

    }

⑩. Put方法

a.ConcurrentHashMap最常用的就是put和get两个方法。现在来介绍put方法,这个put方法依然沿用HashMap的put方法的思想,根据hash值计算这个新插入的点在table中的位置i,如果i位置是空的,直接放进去,否则进行判断,如果i位置是树节点,按照树的方式插入新的节点,否则把i插入到链表的末尾。ConcurrentHashMap中依然沿用这个思想,有一个最重要的不同点就是ConcurrentHashMap不允许key或value为null值。另外由于涉及到多线程,put方法就要复杂一点。在多线程中可能有以下两个情况

i.如果一个或多个线程正在对ConcurrentHashMap进行扩容操作,当前线程也要进入扩容的操作中。这个扩容的操作之所以能被检测到,是因为transfer方法中在空结点上插入forward节点,如果检测到需要插入的位置被forward节点占有,就帮助进行扩容;

ii.如果检测到要插入的节点是非空且不是forward节点,就对这个节点加锁,这样就保证了线程安全。尽管这个有一些影响效率,但是还是会比hashTable的synchronized要好得多。

b.整体流程就是首先定义不允许key或value为null的情况放入  对于每一个放入的值,首先利用spread方法对key的hashcode进行一次hash计算,由此来确定这个值在table中的位置。

c.如果这个位置是空的,那么直接放入,而且不需要加锁操作。

d.如果这个位置存在结点,说明发生了hash碰撞,首先判断这个节点的类型。如果是链表节点(fh>0),则得到的结点就是hash值相同的节点组成的链表的头节点。需要依次向后遍历确定这个新加入的值所在位置。如果遇到hash值与key值都与新加入节点是一致的情况,则只需要更新value值即可。否则依次向后遍历,直到链表尾插入这个结点。如果加入这个节点以后链表长度大于8,就把这个链表转换成红黑树。如果这个节点的类型已经是树节点的话,直接调用树节点的插入方法进行插入新的值。

public V put(K key, V value) {

        return putVal(key, value, false);

    }

    /** Implementation for put and putIfAbsent */

    final V putVal(K key, V value, boolean onlyIfAbsent) {

            //不允许 key或value为null

        if (key == null || value == null) throw new NullPointerException();

        //计算hash值

        int hash = spread(key.hashCode());

        int binCount = 0;

        //死循环 何时插入成功 何时跳出

        for (Node<K,V>[] tab = table;;) {

            Node<K,V> f; int n, i, fh;

            //如果table为空的话,初始化table

            if (tab == null || (n = tab.length) == 0)

                tab = initTable();

            //根据hash值计算出在table里面的位置

            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {

                //如果这个位置没有值 ,直接放进去,不需要加锁

                if (casTabAt(tab, i, null,

                             new Node<K,V>(hash, key, value, null)))

                    break;                   // no lock when adding to empty bin

            }

            //当遇到表连接点时,需要进行整合表的操作

            else if ((fh = f.hash) == MOVED)

                tab = helpTransfer(tab, f);

            else {

                V oldVal = null;

                //结点上锁  这里的结点可以理解为hash值相同组成的链表的头结点

                synchronized (f) {

                    if (tabAt(tab, i) == f) {

                        //fh〉0 说明这个节点是一个链表的节点 不是树的节点

                        if (fh >= 0) {

                            binCount = 1;

                            //在这里遍历链表所有的结点

                            for (Node<K,V> e = f;; ++binCount) {

                                K ek;

                                //如果hash值和key值相同  则修改对应结点的value值

                                if (e.hash == hash &&

                                    ((ek = e.key) == key ||

                                     (ek != null && key.equals(ek)))) {

                                    oldVal = e.val;

                                    if (!onlyIfAbsent)

                                        e.val = value;

                                    break;

                                }

                                Node<K,V> pred = e;

                                //如果遍历到了最后一个结点,那么就证明新的节点需要插入 就把它插入在链表尾部

                                if ((e = e.next) == null) {

                                    pred.next = new Node<K,V>(hash, key,

                                                              value, null);

                                    break;

                                }

                            }

                        }

                        //如果这个节点是树节点,就按照树的方式插入值

                        else if (f instanceof TreeBin) {

                            Node<K,V> p;

                            binCount = 2;

                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,

                                                           value)) != null) {

                                oldVal = p.val;

                                if (!onlyIfAbsent)

                                    p.val = value;

                            }

                        }

                    }

                }

                if (binCount != 0) {

                    //如果链表长度已经达到临界值8 就需要把链表转换为树结构

                    if (binCount >= TREEIFY_THRESHOLD)

                        treeifyBin(tab, i);

                    if (oldVal != null)

                        return oldVal;

                    break;

                }

            }

        }

        //将当前ConcurrentHashMap的元素数量+1

        addCount(1L, binCount);

        return null;

    }

    ⑪.helpTransfer方法

这是一个协助扩容的方法。这个方法被调用的时候,当前ConcurrentHashMap一定已经有了nextTable对象,首先拿到这个nextTable对象,调用transfer方

/**

     * Helps transfer if a resize is in progress.

     */

    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {

        Node<K,V>[] nextTab; int sc;

        if (tab != null && (f instanceof ForwardingNode) &&

            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {

            int rs = resizeStamp(tab.length);//计算一个操作校验码

            while (nextTab == nextTable && table == tab &&

                   (sc = sizeCtl) < 0) {

                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||

                    sc == rs + MAX_RESIZERS || transferIndex <= 0)

                    break;

                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {

                    transfer(tab, nextTab);

                    break;

                }

            }

            return nextTab;

        }

        return table;

    }

法。回看上面的transfer方法可以看到,当本线程进入扩容方法的时候会直接进入复制阶段。

⑫. treeifyBin方法

这个方法用于将过长的链表转换为TreeBin对象。但是他并不是直接转换,而是进行一次容量判断,如果容量没有达到转换的要求,直接进行扩容操作并返回;如果满足条件才链表的结构抓换为TreeBin ,这与HashMap不同的是,它并没有把TreeNode直接放入红黑树,而是利用了TreeBin这个小容器来封装所有的TreeNode.

private final void treeifyBin(Node<K,V>[] tab, int index) {

        Node<K,V> b; int n, sc;

        if (tab != null) {

            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)//如果table.length<64 就扩大一倍 返回

                tryPresize(n << 1);

            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {

                synchronized (b) {

                    if (tabAt(tab, index) == b) {

                        TreeNode<K,V> hd = null, tl = null;

                        //构造了一个TreeBin对象 把所有Node节点包装成TreeNode放进去

                        for (Node<K,V> e = b; e != null; e = e.next) {

                            TreeNode<K,V> p =

                                new TreeNode<K,V>(e.hash, e.key, e.val,

                                                  null, null);//这里只是利用了TreeNode封装 而没有利用TreeNode的next域和parent域

                            if ((p.prev = tl) == null)

                                hd = p;

                            else

                                tl.next = p;

                            tl = p;

                        }

                        //在原来index的位置 用TreeBin替换掉原来的Node对象

                        setTabAt(tab, index, new TreeBin<K,V>(hd));

                    }

                }

            }

        }

    }

⑬.get方法比较简单,给定一个key来确定value的时候,必须满足两个条件  key相同  hash值相同,对于节点可能在链表或树上的情况,需要分别去查找.

public V get(Object key) {

        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;

        //计算hash值

        int h = spread(key.hashCode());

        //根据hash值确定节点位置

        if ((tab = table) != null && (n = tab.length) > 0 &&

            (e = tabAt(tab, (n - 1) & h)) != null) {

            //如果搜索到的节点key与传入的key相同且不为null,直接返回这个节点    

            if ((eh = e.hash) == h) {

                if ((ek = e.key) == key || (ek != null && key.equals(ek)))

                    return e.val;

            }

            //如果eh<0 说明这个节点在树上 直接寻找

            else if (eh < 0)

                return (p = e.find(h, key)) != null ? p.val : null;

             //否则遍历链表 找到对应的值并返回

            while ((e = e.next) != null) {

                if (e.hash == h &&

                    ((ek = e.key) == key || (ek != null && key.equals(ek))))

                    return e.val;

            }

        }

        return null;

    }

⑭.为了统计元素个数,ConcurrentHashMap定义了一些变量和一个内部类

/**

     * A padded cell for distributing counts.  Adapted from LongAdder

     * and Striped64.  See their internal docs for explanation.

     */

    @sun.misc.Contended static final class CounterCell {

        volatile long value;

        CounterCell(long x) { value = x; }

    }

    

  /******************************************/  

    

    /**

     * 实际上保存的是hashmap中的元素个数  利用CAS锁进行更新

     但它并不用返回当前hashmap的元素个数

     

     */

    private transient volatile long baseCount;

    /**

     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.

     */

    private transient volatile int cellsBusy;

    /**

     * Table of counter cells. When non-null, size is a power of 2.

     */

    private transient volatile CounterCell[] counterCells;

⑮.mappingCount与size方法的类似  从Java工程师给出的注释来看,应该使用mappingCount代替size方法 两个方法都没有直接返回basecount 而是统计一次这个值,而这个值其实也是一个大概的数值,因此可能在统计的时候有其他线程正在执行插入或删除操作。

public int size() {

        long n = sumCount();

        return ((n < 0L) ? 0 :

                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :

                (int)n);

    }

     /**

     * Returns the number of mappings. This method should be used

     * instead of {@link #size} because a ConcurrentHashMap may

     * contain more mappings than can be represented as an int. The

     * value returned is an estimate; the actual count may differ if

     * there are concurrent insertions or removals.

     *

     * @return the number of mappings

     * @since 1.8

     */

    public long mappingCount() {

        long n = sumCount();

        return (n < 0L) ? 0L : n; // ignore transient negative values

    }

    

     final long sumCount() {

        CounterCell[] as = counterCells; CounterCell a;

        long sum = baseCount;

        if (as != null) {

            for (int i = 0; i < as.length; ++i) {

                if ((a = as[i]) != null)

                    sum += a.value;//所有counter的值求和

            }

        }

        return sum;

    }

⑯.在put方法结尾处调用了addCount方法,把当前ConcurrentHashMap的元素个数+1这个方法一共做了两件事,更新baseCount的值,检测是否进行扩容。

private final void addCount(long x, int check) {

        CounterCell[] as; long b, s;

        //利用CAS方法更新baseCount的值

        if ((as = counterCells) != null ||

            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {

            CounterCell a; long v; int m;

            boolean uncontended = true;

            if (as == null || (m = as.length - 1) < 0 ||

                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||

                !(uncontended =

                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {

                fullAddCount(x, uncontended);

                return;

            }

            if (check <= 1)

                return;

            s = sumCount();

        }

        //如果check值大于等于0 则需要检验是否需要进行扩容操作

        if (check >= 0) {

            Node<K,V>[] tab, nt; int n, sc;

            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&

                   (n = tab.length) < MAXIMUM_CAPACITY) {

                int rs = resizeStamp(n);

                //

                if (sc < 0) {

                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||

                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||

                        transferIndex <= 0)

                        break;

                     //如果已经有其他线程在执行扩容操作

                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))

                        transfer(tab, nt);

                }

                //当前线程是唯一的或是第一个发起扩容的线程  此时nextTable=null

                else if (U.compareAndSwapInt(this, SIZECTL, sc,

                                             (rs << RESIZE_STAMP_SHIFT) + 2))

                    transfer(tab, null);

                s = sumCount();

            }

        }

    }

 

最后

以上就是妩媚芒果为你收集整理的Java线程不安全集合类解决办法以及JDK1.7与1.8ConcurrentHashMap之间的区别的全部内容,希望文章能够帮你解决Java线程不安全集合类解决办法以及JDK1.7与1.8ConcurrentHashMap之间的区别所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部