我是靠谱客的博主 无聊水蜜桃,最近开发中收集的这篇文章主要介绍opencv实现寻找图片中蓝色区域大体思路:,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

大体思路:

蓝色在RGB 有个范围,比如我用的是 “B = 118, G = 63, R = 23; //各通道的阈值设定,针对与蓝色车牌”
然后将每个像素点与BGR阈值做差,在一定范围内,则显示为白色,其他为黑色,最后自己查找一下轮廓,就可以找出感兴趣的颜色区域

#include <iostream>
#include <opencv2opencv.hpp>

using namespace std;
using namespace cv;

int main(int, char *argv[])
{
	Mat OriginalImg;

	OriginalImg = imread("1.jpg", IMREAD_COLOR);//读取原始彩色图像
	if (OriginalImg.empty())  //判断图像对否读取成功
	{
		cout << "错误!读取图像失败n";
		return -1;
	}
	//	imshow("原图", OriginalImg); //显示原始图像
	cout << "Width:" << OriginalImg.rows << "tHeight:" << OriginalImg.cols << endl;//打印长宽

	//Mat ResizeImg;
	//if (OriginalImg.cols > 640)
	//{
	//	resize(OriginalImg, ResizeImg, Size(640, 640 * OriginalImg.rows / OriginalImg.cols));
	//}
	//imshow("尺寸变换图", ResizeImg);

	unsigned char pixelB, pixelG, pixelR;  //记录各通道值
	unsigned char DifMax = 50;             //基于颜色区分的阈值设置
//	unsigned char B = 138, G = 63, R = 23; //各通道的阈值设定,针对与蓝色车牌
	unsigned char B = 118, G = 63, R = 23; //各通道的阈值设定,针对与蓝色车牌
	Mat BinRGBImg = OriginalImg.clone();  //二值化之后的图像
	int i = 0, j = 0;
	for (i = 0; i < OriginalImg.rows; i++)   //通过颜色分量将图片进行二值化处理
	{
		for (j = 0; j < OriginalImg.cols; j++)
		{
			pixelB = OriginalImg.at<Vec3b>(i, j)[0]; //获取图片各个通道的值
			pixelG = OriginalImg.at<Vec3b>(i, j)[1];
			pixelR = OriginalImg.at<Vec3b>(i, j)[2];

			if (abs(pixelB - B) < DifMax && abs(pixelG - G) < DifMax && abs(pixelR - R) < DifMax)
			{                                           //将各个通道的值和各个通道阈值进行比较
				BinRGBImg.at<Vec3b>(i, j)[0] = 255;     //符合颜色阈值范围内的设置成白色
				BinRGBImg.at<Vec3b>(i, j)[1] = 255;
				BinRGBImg.at<Vec3b>(i, j)[2] = 255;
			}
			else
			{
				BinRGBImg.at<Vec3b>(i, j)[0] = 0;        //不符合颜色阈值范围内的设置为黑色
				BinRGBImg.at<Vec3b>(i, j)[1] = 0;
				BinRGBImg.at<Vec3b>(i, j)[2] = 0;
			}
		}
	}
	imshow("基于颜色信息二值化", BinRGBImg);        //显示二值化处理之后的图像

	waitKey();
	return 0;

}

最后

以上就是无聊水蜜桃为你收集整理的opencv实现寻找图片中蓝色区域大体思路:的全部内容,希望文章能够帮你解决opencv实现寻找图片中蓝色区域大体思路:所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部