我是靠谱客的博主 机灵泥猴桃,最近开发中收集的这篇文章主要介绍vs2013+opencv3.2配置于仕琪人脸检测算法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

最近在学习人脸识别,比如Dlib,face++,于仕琪人脸检测算法以及opencv自带的人脸识别算法。

对于于仕琪人脸检测算法网上的配置不是很详细,再次记录一下配置过程。

下载地址:于仕琪人脸检测算法:https://github.com/ShiqiYu/libfacedetection

1:解压

2:创建一个空工程

3:配置

点击工程,右击选择属性

(1)点击VC++目录

在包含目录选择   libfacedetection-masterlibfacedetection-masterinclude 目录

在库目录选择   libfacedetection-masterlibfacedetection-masterlib 目录

(2)点击链接器

在输入添加:libfacedetect.lib    libfacedetect-x64.lib

4:将    libfacedetection-masterlibfacedetection-masterbin中的libfacedetect.dll与libfacedetect-x64.dll复制到C:WindowsSysWOW64中(64位),32位复制到C:WindowsSystem32中。

新建       

cpp

#include <stdio.h>
#include <opencv2/opencv.hpp>
#include "facedetect-dll.h"

//#pragma comment(lib,"libfacedetect.lib")
#pragma comment(lib,"libfacedetect-x64.lib")

//define the buffer size. Do not change the size!
#define DETECT_BUFFER_SIZE 0x20000
using namespace cv;

int main(int argc, char* argv[])
{
	argc = 2;
    if(argc != 2)
    {
        printf("Usage: %s <image_file_name>n", argv[0]);
        return -1;
    }

	//load an image and convert it to gray (single-channel)
	Mat image = imread(argv[1]);//图片目录 
	if(image.empty())
	{
		fprintf(stderr, "Can not load the image file %s.n", argv[1]);
		return -1;
	}
	Mat gray;
	cvtColor(image, gray, CV_BGR2GRAY);


	int * pResults = NULL; 
    //pBuffer is used in the detection functions.
    //If you call functions in multiple threads, please create one buffer for each thread!
    unsigned char * pBuffer = (unsigned char *)malloc(DETECT_BUFFER_SIZE);
    if(!pBuffer)
    {
        fprintf(stderr, "Can not alloc buffer.n");
        return -1;
    }
	
	int doLandmark = 1;

	///
	// frontal face detection / 68 landmark detection
	// it's fast, but cannot detect side view faces
	//
	//!!! The input image must be a gray one (single-channel)
	//!!! DO NOT RELEASE pResults !!!
	pResults = facedetect_frontal(pBuffer, (unsigned char*)(gray.ptr(0)), gray.cols, gray.rows, (int)gray.step,
									1.2f, 2, 48, 0, doLandmark);

	printf("%d faces detected.n", (pResults ? *pResults : 0));
	Mat result_frontal = image.clone();
	//print the detection results
	for(int i = 0; i < (pResults ? *pResults : 0); i++)
	{
        short * p = ((short*)(pResults+1))+142*i;
		int x = p[0];
		int y = p[1];
		int w = p[2];
		int h = p[3];
		int neighbors = p[4];
		int angle = p[5];

		printf("face_rect=[%d, %d, %d, %d], neighbors=%d, angle=%dn", x, y, w, h, neighbors, angle);
		rectangle(result_frontal, Rect(x, y, w, h), Scalar(0, 255, 0), 2);
		if (doLandmark)
		{
			for (int j = 0; j < 68; j++)
				circle(result_frontal, Point((int)p[6 + 2 * j], (int)p[6 + 2 * j + 1]), 1, Scalar(0, 255, 0));
		}
	}
	imshow("Results_frontal", result_frontal);


	///
	// frontal face detection designed for video surveillance / 68 landmark detection
	// it can detect faces with bad illumination.
	//
	//!!! The input image must be a gray one (single-channel)
	//!!! DO NOT RELEASE pResults !!!
	pResults = facedetect_frontal_surveillance(pBuffer, (unsigned char*)(gray.ptr(0)), gray.cols, gray.rows, (int)gray.step,
												1.2f, 2, 48, 0, doLandmark);
	printf("%d faces detected.n", (pResults ? *pResults : 0));
	Mat result_frontal_surveillance = image.clone();;
	//print the detection results
	for(int i = 0; i < (pResults ? *pResults : 0); i++)
	{
        short * p = ((short*)(pResults+1))+142*i;
		int x = p[0];
		int y = p[1];
		int w = p[2];
		int h = p[3];
		int neighbors = p[4];
		int angle = p[5];

		printf("face_rect=[%d, %d, %d, %d], neighbors=%d, angle=%dn", x, y, w, h, neighbors, angle);
		rectangle(result_frontal_surveillance, Rect(x, y, w, h), Scalar(0, 255, 0), 2);
		if (doLandmark)
		{
			for (int j = 0; j < 68; j++)
				circle(result_frontal_surveillance, Point((int)p[6 + 2 * j], (int)p[6 + 2 * j + 1]), 1, Scalar(0, 255, 0));
		}
	}
	imshow("Results_frontal_surveillance", result_frontal_surveillance);


	///
	// multiview face detection / 68 landmark detection
	// it can detect side view faces, but slower than facedetect_frontal().
	//
	//!!! The input image must be a gray one (single-channel)
	//!!! DO NOT RELEASE pResults !!!
	pResults = facedetect_multiview(pBuffer, (unsigned char*)(gray.ptr(0)), gray.cols, gray.rows, (int)gray.step,
									1.2f, 2, 48, 0, doLandmark);

	printf("%d faces detected.n", (pResults ? *pResults : 0));
	Mat result_multiview = image.clone();;
	//print the detection results
	for(int i = 0; i < (pResults ? *pResults : 0); i++)
	{
        short * p = ((short*)(pResults+1))+142*i;
		int x = p[0];
		int y = p[1];
		int w = p[2];
		int h = p[3];
		int neighbors = p[4];
		int angle = p[5];

		printf("face_rect=[%d, %d, %d, %d], neighbors=%d, angle=%dn", x, y, w, h, neighbors, angle);
		rectangle(result_multiview, Rect(x, y, w, h), Scalar(0, 255, 0), 2);
		if (doLandmark)
		{
			for (int j = 0; j < 68; j++)
				circle(result_multiview, Point((int)p[6 + 2 * j], (int)p[6 + 2 * j + 1]), 1, Scalar(0, 255, 0));
		}
	}
	imshow("Results_multiview", result_multiview);


	///
	// reinforced multiview face detection / 68 landmark detection
	// it can detect side view faces, better but slower than facedetect_multiview().
	//
	//!!! The input image must be a gray one (single-channel)
	//!!! DO NOT RELEASE pResults !!!
	pResults = facedetect_multiview_reinforce(pBuffer, (unsigned char*)(gray.ptr(0)), gray.cols, gray.rows, (int)gray.step,
												1.2f, 3, 48, 0, doLandmark);

    printf("%d faces detected.n", (pResults ? *pResults : 0));
	Mat result_multiview_reinforce = image.clone();;
	//print the detection results
	for(int i = 0; i < (pResults ? *pResults : 0); i++)
	{
        short * p = ((short*)(pResults+1))+142*i;
		int x = p[0];
		int y = p[1];
		int w = p[2];
		int h = p[3];
		int neighbors = p[4];
		int angle = p[5];

		printf("face_rect=[%d, %d, %d, %d], neighbors=%d, angle=%dn", x,y,w,h,neighbors, angle);
		rectangle(result_multiview_reinforce, Rect(x, y, w, h), Scalar(0, 255, 0), 2);
		if (doLandmark)
		{
			for (int j = 0; j < 68; j++)
				circle(result_multiview_reinforce, Point((int)p[6 + 2 * j], (int)p[6 + 2 * j + 1]), 1, Scalar(0, 255, 0));
		}
	}
	imshow("Results_multiview_reinforce", result_multiview_reinforce);
	waitKey();

    //release the buffer
    free(pBuffer);

	return 0;
}
或者导入  libfacedetection-masterlibfacedetection-masterexample中的libfacedetect-example.cpp

直接debug编译即可



最后

以上就是机灵泥猴桃为你收集整理的vs2013+opencv3.2配置于仕琪人脸检测算法的全部内容,希望文章能够帮你解决vs2013+opencv3.2配置于仕琪人脸检测算法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部