我是靠谱客的博主 疯狂飞鸟,这篇文章主要介绍用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别写在前面的话训练数据本程序用到的第三方库干货,代码及讲解,现在分享给大家,希望可以做个参考。

写在前面的话

不同于Tensorflow官方教程简略的DEMO,我们自己动手实现以下目标
- 从本地文件系统中加载图片、标签
- 对图片和标签预处理
- 创建batch对象以提供随机批次训练
- 构建网络结构
- 训练神经网络
- 在验证集合上评估准确率
- 保存及加载网络参数模型

CNN卷积神经网络的基础知识及简介,我推荐这篇文章。
http://brohrer.github.io/how_convolutional_neural_networks_work.html

训练数据

请下载 https://pan.baidu.com/s/1cdBnbC
训练集合
train.txt 图片文件名-标签
train.rar 图片库,请解压为train文件夹
验证集合
val.txt 图片名-标签
val.rar 图片库,请解压为val文件夹

本程序用到的第三方库

  • tensorflow (1.0.1) 谷歌基于DistBelief进行研发的第二代人工智能学习系统
  • Pillow (3.2.0) 基本的图像处理功能
  • numpy (1.12.1) 开源的数值计算扩展
  • matplotlib (1.5.1) Python 的 2D绘图库

干货,代码及讲解

定义输入数据路径

复制代码
1
2
3
4
TRAIN_LABEL_PATH = "/path/to/train.txt" TRAIN_IMAGE_PATH = "/path/to/train/" VAL_LABEL_PATH = "/path/to/val.txt" VAL_IMAGE_PATH = "/path/to/val/"

定义函数辅助构建神经网络

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def weigth_variable(shape, name): # 这里使用截断的正态分布,标准差为0.1 initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, name = name) def bias_variable(shape): # bias初始化为0.1避免死亡节点 initial = tf.constant(0.1, shape=shape) return initial def conv2d(x, W): # 参数中x是输入,W是卷积的参数,比如[5,5,1,32]:前面两个数字代表卷积核的尺寸;第三个数字代表有多少个channel。因为我们只有灰度单色,所以是1,如果是RGB彩色图片,这里应该是3。 # 最后一个数字代表卷积核的数量,也就是这个卷积层会提取多少类的特征。 # Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点。 # Padding代表边界的处理方式,这里的SAME代表给边界加上Padding让卷积的输出和输入保持同样(SAME)是尺寸。 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") def max_pool_2x2(x): # tf.nn.max_pool是tf中的最大池化函数,我们这里用2*2的最大池化,即将2*2像素块降为1*1的像素。 # 因为希望整体上缩小图片尺寸,因此池化层的strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片。 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

加载训练和验证集合的数据、标签

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
TRAIN_LABEL_DICT = {} VAL_LABEL_DICT = {} with open(TRAIN_LABEL_PATH, "r") as f: lines = f.readlines() for line in lines: arr = line.strip().split(" ") TRAIN_LABEL_DICT[arr[0]] = int(arr[1]) with open(VAL_LABEL_PATH, "r") as f: lines = f.readlines() for line in lines: arr = line.strip().split(" ") VAL_LABEL_DICT[arr[0]] = int(arr[1]) train_image_list = [] train_label_list = [] val_image_list = [] val_label_list = [] for filename, label in TRAIN_LABEL_DICT.items(): if os.path.isfile(os.path.join(TRAIN_IMAGE_PATH, filename)): train_image_list.append(os.path.join(TRAIN_IMAGE_PATH, filename)) train_label_list.append(label) for filename, label in VAL_LABEL_DICT.items(): if os.path.isfile(os.path.join(VAL_IMAGE_PATH, filename)): val_image_list.append(os.path.join(VAL_IMAGE_PATH, filename)) val_label_list.append(label)

创建读取文件的管道

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
CAPACITY = len(train_label_list) VAL_COUNT = len(val_label_list) # 转换类型 list => tensor train_image_list_tensor = tf.convert_to_tensor(train_image_list) train_label_list_tensor = tf.convert_to_tensor(train_label_list) val_image_list_tensor = tf.convert_to_tensor(val_image_list) val_label_list_tensor = tf.convert_to_tensor(val_label_list) # 转换标签类型至OneHot向量 # 如:数字2 => [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] train_label_list_tensor = tf.one_hot(train_label_list_tensor,10) val_label_list_tensor = tf.one_hot(val_label_list_tensor, 10) # 创建管道 train_input_queue = tf.train.slice_input_producer( [train_image_list_tensor, train_label_list_tensor], shuffle=False) val_input_queue = tf.train.slice_input_producer( [val_image_list_tensor, val_label_list_tensor], shuffle=False)

读取图片及预处理

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# 训练数据读取 train_file_content = tf.read_file(train_input_queue[0]) train_image = tf.image.decode_jpeg(train_file_content, channels=1) train_image = tf.to_float(train_image) # 训练数据预处理,归一化 tmp = tf.reshape(train_image, [784]) tmp = (tmp - 0.0) / (255.0) train_image = tf.reshape(tmp, [28, 28, 1]) train_image.set_shape((28, 28, 1)) # 训练标签读取 train_label = train_input_queue[1] # 创建训练batch对象 batch_size = 50 num_preprocess_threads = 1 min_queue_examples = 256 images = tf.train.shuffle_batch( [train_image, train_label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=CAPACITY, min_after_dequeue=min_queue_examples) # 验证数据读取及预处理 val_file_content = tf.read_file(val_input_queue[0]) val_image = tf.image.decode_jpeg(val_file_content, channels=1) val_image = tf.to_float(val_image) tmp = tf.reshape(val_image, [784]) tmp = (tmp - 0.0) / (255.0) val_image = tf.reshape(tmp, [28, 28, 1]) val_image.set_shape((28, 28, 1)) val_label = val_input_queue[1]

定义神经网络

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# 定义占位符 x = tf.placeholder(tf.float32, [None, 28, 28, 1]) y_ = tf.placeholder(tf.float32, [None, 10]) # 第一层卷积池化 W_conv1 = weigth_variable([5, 5, 1, 32], "w_conv1") b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 第二层卷积池化 W_conv2 = weigth_variable([5, 5, 32, 64], "w_conv2") b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 全连接隐藏层,激活函数为ReLU W_fc1 = weigth_variable([7 * 7 * 64, 1024], "w_fc1") b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 全连接输出层,使用softmax分类器 W_fc2 = weigth_variable([1024, 10], "w_fc2") b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # 平均信息量 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 准确率 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy)

训练前的准备

复制代码
1
2
3
init_op = tf.global_variables_initializer() saver = tf.train.Saver() merged = tf.summary.merge_all()

训练、验证及保存模型

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
with tf.Session() as sess: # tensorboard summary_writer = tf.summary.FileWriter('/tmp/tensorboard_logs', sess.graph) # 如果有已训练好的模型,就加载已训练好的 # 否则初始化一个新参数模型 try: saver.restore(sess, "/tmp/imageModel-0") print("model restored.") except Exception as e: sess.run(init_op) # 启动文件加载队列 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # 训练迭代 for i in range(2000): sample, label = sess.run([images[0], images[1]]) # 每100次迭代打印一次训练进度 if i % 100 == 0: #### 这段代码可以绘制出当前图像以肉眼观测 # tmp = sample[0].reshape([28, 28]) # print(label[0]) # im = Image.fromarray(np.uint8(tmp)) # plt.imshow(im) # plt.show() #### train_accuracy, summary = sess.run([accuracy, merged], feed_dict={x: sample, y_: label, keep_prob:1.0}) print("step %d, training accuracy %g" % (i, train_accuracy)) summary_writer.add_summary(summary, i) train_step.run(feed_dict={x: sample, y_: label, keep_prob:0.8}) # 评估准确率 print("start evaluate") sum_total = 0.0 for i in range(VAL_COUNT): image, label = sess.run([val_image, val_label]) sum_total += sess.run(accuracy, feed_dict={x: [image], y_: [label], keep_prob:1.0}) print("eval precision:") print(sum_total / VAL_COUNT) # 保存当前神经网络参数模型 save_path = saver.save(sess, "/tmp/imageModel", global_step=0) print("save path:") print(save_path) print("###############################") coord.request_stop() coord.join(threads)

最后

以上就是疯狂飞鸟最近收集整理的关于用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别写在前面的话训练数据本程序用到的第三方库干货,代码及讲解的全部内容,更多相关用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别写在前面内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部