概述
深度了解数据在内存中的存储
- C语言当中使用的数据类型
- 使用的类型
- 整型类
- 浮点类型
- 内存当中的存储
- 原码、反码、补码
- 大小端
- 什么是大小端
- 浮点数的存储
- 浮点数的存储
- 浮点数的存储规则
- 指数 E 从内存当中取出
C语言当中使用的数据类型
使用的类型
char 字符数据类型
short 短整型
int 整形
long 长整型
long long 更长的整形
float 单精度浮点数
double 双精度浮点数
这些里面又分为整型和浮点型
整型类
整型又分为有符号整型和无符号整型,[int] 可以省略掉,就像 short , long 。
char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
浮点类型
float
double
内存当中的存储
原码、反码、补码
整数有三种表示方法,原码、反码、补码,这三种表示方式都有符号位和数值位两部分,符号位都是用 0 表示“正”,1 表示“负”。正数的三种表示方法都相同,负数的三种表示方法各不相同。
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码+1就得到补码。
整型在内存当中存放的就是补码。
大小端
数据在内存中存储的时候就会有大小端的存储模式
什么是大小端
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地
址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中。
int a = 0x11223344;
像 11 就是数据的高位,如果是大端存储模式的话,就保存在低位,因为我的电脑是小端存储模式,所以放在高地址当中,所以看到的是 0x11223344 。如果是大端存储的话,内存当中看到的就是 0x44332211 。
浮点数的存储
常见的浮点数:
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数的存储
先看示例:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%dn",n);
printf("*pFloat的值为:%fn",*pFloat);
*pFloat = 9.0;
printf("num的值为:%dn",n);
printf("*pFloat的值为:%fn",*pFloat);
return 0;
}
输出为:
这里就要讨论一下浮点数的存储规则了。
浮点数的存储规则
根据 国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。
那么,s=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的 1 位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
指数 E 从内存当中取出
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为 -1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000 ,则其二进制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于 1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的 1 ,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0,以及接近于 0 的很小的数字。
E全为1
这时,如果有效数字M全为 0,表示±无穷大(正负取决于符号位s);
所以现在就可以解决上面的那个问题了。
最后
以上就是忧虑发夹为你收集整理的深入了解C语言-数据的存储C语言当中使用的数据类型内存当中的存储浮点数的存储的全部内容,希望文章能够帮你解决深入了解C语言-数据的存储C语言当中使用的数据类型内存当中的存储浮点数的存储所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复