概述
两个主要的方法:
代码:
- package mapreduce.baozi;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
- import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- public class TestwithMultipleOutputs extends Configured{
- public static class MapClass extends Mapper<LongWritable, Text, Text, IntWritable> {
- private MultipleOutputs<Text, Text> mos;
- @Override
- protected void setup(Mapper<LongWritable, Text, Text, IntWritable>.Context context)throws IOException, InterruptedException {
- mos = new MultipleOutputs(context);
- }
- public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
- String line = value.toString();
- String[] tokens = line.split("t");
- if(tokens[0].equals("hadoop")){
- mos.write("hadoop", new Text(tokens[0]),new Text(tokens[1]));
- }else if(tokens[0].equals("hive")){
- mos.write("hive", new Text(tokens[0]),new Text(tokens[1]));
- }else if(tokens[0].equals("hbase")){
- mos.write("hbase", new Text(tokens[0]),new Text(tokens[1]));
- }else if(tokens[0].equals("spark")){
- mos.write("spark", new Text(tokens[0]),new Text(tokens[1]));
- }
- }
- protected void cleanup(Context context) throws IOException,InterruptedException {
- mos.close();
- }
- }
- public static void main(String[] args) throws Exception {
- Configuration conf = new Configuration();
- Job job=Job.getInstance(conf, "MultipleOutput");
- job.setJarByClass(TestwithMultipleOutputs.class);
- Path in = new Path(args[0]);
- Path out = new Path(args[1]);
- FileInputFormat.setInputPaths(job, in);
- FileOutputFormat.setOutputPath(job, out);
- job.setMapperClass(MapClass.class);
- job.setNumReduceTasks(0);
- MultipleOutputs.addNamedOutput(job,"hadoop",TextOutputFormat.class,Text.class,Text.class);
- MultipleOutputs.addNamedOutput(job,"hive",TextOutputFormat.class,Text.class,Text.class);
- MultipleOutputs.addNamedOutput(job,"hbase",TextOutputFormat.class,Text.class,Text.class);
- MultipleOutputs.addNamedOutput(job,"spark",TextOutputFormat.class,Text.class,Text.class);
- System.exit(job.waitForCompletion(true)?0:1);
- }
- }
- 输入数据:
- more aa.txt
- hadoop hadoops
- hive 21312q
- hbase dwfsdf
- spark sdfsdf
- hbase werwer
- spark wefg
- hive thhdf
- hive jtyj
- hadoop trjuh
- hbase sdfsf
运行结果目录:
- -rw-r--r-- 2 jiuqian supergroup 123 2015-10-13 09:21 libin/input/aa.txt
- Found 6 items
- -rw-r--r-- 2 jiuqian supergroup 0 2015-10-13 09:25 libin/input/mul1/_SUCCESS
- -rw-r--r-- 2 jiuqian supergroup 28 2015-10-13 09:25 libin/input/mul1/hadoop-m-00000
- -rw-r--r-- 2 jiuqian supergroup 38 2015-10-13 09:25 libin/input/mul1/hbase-m-00000
- -rw-r--r-- 2 jiuqian supergroup 33 2015-10-13 09:25 libin/input/mul1/hive-m-00000
- -rw-r--r-- 2 jiuqian supergroup 0 2015-10-13 09:25 libin/input/mul1/part-m-00000
- -rw-r--r-- 2 jiuqian supergroup 24 2015-10-13 09:25 libin/input/mul1/spark-m-00000
- </pre><pre name="code" class="java">hdfs dfs -text libin/input/mul1/hadoop-m-00000
- hadoop hadoops
- hadoop trjuh
- 15/10/13 09:25:01 INFO client.RMProxy: Connecting to ResourceManager at sh-rslog1/27.115.29.102:8032
- 15/10/13 09:25:02 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
- 15/10/13 09:25:03 INFO input.FileInputFormat: Total input paths to process : 1
- 15/10/13 09:25:03 INFO mapreduce.JobSubmitter: number of splits:1
- 15/10/13 09:25:03 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1435558921826_10644
- 15/10/13 09:25:03 INFO impl.YarnClientImpl: Submitted application application_1435558921826_10644
- 15/10/13 09:25:03 INFO mapreduce.Job: The url to track the job: http://sh-rslog1:8088/proxy/application_1435558921826_10644/
- 15/10/13 09:25:03 INFO mapreduce.Job: Running job: job_1435558921826_10644
- 15/10/13 09:25:11 INFO mapreduce.Job: Job job_1435558921826_10644 running in uber mode : false
- 15/10/13 09:25:11 INFO mapreduce.Job: map 0% reduce 0%
- 15/10/13 09:25:18 INFO mapreduce.Job: map 100% reduce 0%
- 15/10/13 09:25:18 INFO mapreduce.Job: Job job_1435558921826_10644 completed successfully
- 15/10/13 09:25:18 INFO mapreduce.Job: Counters: 30
- File System Counters
- FILE: Number of bytes read=0
- FILE: Number of bytes written=107447
- FILE: Number of read operations=0
- FILE: Number of large read operations=0
- FILE: Number of write operations=0
- HDFS: Number of bytes read=241
- HDFS: Number of bytes written=123
- HDFS: Number of read operations=5
- HDFS: Number of large read operations=0
- HDFS: Number of write operations=6
- Job Counters
- Launched map tasks=1
- Data-local map tasks=1
- Total time spent by all maps in occupied slots (ms)=4262
- Total time spent by all reduces in occupied slots (ms)=0
- Total time spent by all map tasks (ms)=4262
- Total vcore-seconds taken by all map tasks=4262
- Total megabyte-seconds taken by all map tasks=6546432
- Map-Reduce Framework
- Map input records=10
- Map output records=0
- Input split bytes=118
- Spilled Records=0
- Failed Shuffles=0
- Merged Map outputs=0
- GC time elapsed (ms)=41
- CPU time spent (ms)=1350
- Physical memory (bytes) snapshot=307478528
- Virtual memory (bytes) snapshot=1981685760
- Total committed heap usage (bytes)=1011351552
- File Input Format Counters
- Bytes Read=123
- File Output Format Counters
- Bytes Written=0
最后
以上就是生动外套为你收集整理的Hadoop的多目录输出 -2的全部内容,希望文章能够帮你解决Hadoop的多目录输出 -2所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复