我是靠谱客的博主 温暖火龙果,最近开发中收集的这篇文章主要介绍C++:实现量化linear least squares regression 线性最小二乘回归测试实例,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

C++:实现量化linear least squares regression 线性最小二乘回归测试实例



#include "linearleastsquaresregression.hpp"
#include "utilities.hpp"
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/linearleastsquaresregression.hpp>
#include <ql/functional.hpp>
#include <boost/circular_buffer.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

void LinearLeastSquaresRegressionTest::testRegression() {

    BOOST_TEST_MESSAGE("Testing linear least-squares regression...");

    SavedSettings backup;

    const Real tolerance = 0.05;

    const Size nr=100000;
    PseudoRandom::rng_type rng(PseudoRandom::urng_type(1234U));

    std::vector<ext::function<Real(Real)>> v = {
        [](Real x) -> Real { return 1.0; },
        [](Real x) -> Real { return x; },
        [](Real x) -> Real { return x*x; },
        [](Real x) -> Real { return std::sin(x); }
    };

    std::vector<ext::function<Real(Real)>> w(v);
    w.emplace_back([](Real x){ return x*x; });

    for (Size k=0; k<3; ++k) {
        Size i;
        const Real a[] = {
            rng.next().value,
            rng.next().value,
            rng.next().value,
            rng.next().value
        };

        std::vector<Real> x(nr), y(nr);
        for (i=0; i<nr; ++i) {
            x[i] = rng.next().value;

            // regression in y = a_1 + a_2*x + a_3*x^2 + a_4*sin(x) + eps
            y[i] =  a[0]*v[0](x[i]) + a[1]*v[1](x[i]) + a[2]*v[2](x[i])
                + a[3]*v[3](x[i]) + rng.next().value;
        }

        LinearRegression m(x, y, v);

        for (i=0; i<v.size(); ++i) {
            if (m.standardErrors()[i] > tolerance) {
                BOOST_ERROR("Failed to reproduce linear regression coef."
                    << "n    error:     " << m.standardErrors()[i]
                << "n    tolerance: " << tolerance);
            }
            if (std::fabs(m.coefficients()[i]-a[i]) > 3*m.standardErrors()[i]) {
                BOOST_ERROR("Failed to reproduce linear regression coef."
                    << "n    calculated: " << m.coefficients()[i]
                << "n    error:      " << m.standardErrors()[i]
                << "n    expected:   " << a[i]);
            }
        }

        m = LinearRegression(x, y, w);

        const Real ma[] = {m.coefficients()[0], m.coefficients()[1], 
            m.coefficients()[2]+m.coefficients()[4],
            m.coefficients()[3]};
        const Real err[] = {m.standardErrors()[0], m.standardErrors()[1],
            std::sqrt( m.standardErrors()[2]*m.standardErrors()[2]
        +m.standardErrors()[4]*m.standardErrors()[4]),
            m.standardErrors()[3]};
        for (i=0; i<v.size(); ++i) {
            if (std::fabs(ma[i] - a[i]) > 3*err[i]) {
                BOOST_ERROR("Failed to reproduce linear regression coef."
                    << "n    calculated: " << ma[i]
                << "n    error:      " << err[i]
                << "n    expected:   " << a[i]);
            }
        }
    }
}

namespace linear_least_square_regression_test {

    struct get_item {
        Size i;
        explicit get_item(Size i) : i(i) {}
        Real operator()(const Array& a) const {
            return a[i];
        }
    };

}

void LinearLeastSquaresRegressionTest::testMultiDimRegression() {

    BOOST_TEST_MESSAGE(
        "Testing multi-dimensional linear least-squares regression...");

    using namespace linear_least_square_regression_test;

    SavedSettings backup;

    const Size nr=100000;
    const Size dims = 4;
    const Real tolerance = 0.01;
    PseudoRandom::rng_type rng(PseudoRandom::urng_type(1234U));

    std::vector<ext::function<Real(Array)> > v;
    v.emplace_back([](const Array& x) { return 1.0; });
    for (Size i=0; i < dims; ++i) {
        v.emplace_back(get_item(i));
    }

    Array coeff(v.size());
    for (Size i=0; i < v.size(); ++i) {
        coeff[i] = rng.next().value;
    }

    std::vector<Real> y(nr, 0.0);
    std::vector<Array> x(nr, Array(dims));
    for (Size i=0; i < nr; ++i) {
        for (Size j=0; j < dims; ++j) {
            x[i][j] = rng.next().value;
        }

        for (Size j=0; j < v.size(); ++j) {
            y[i] += coeff[j]*v[j](x[i]);
        }
        y[i] += rng.next().value;
    }

    LinearRegression m(x, y, v);

    for (Size i=0; i < v.size(); ++i) {
        if (m.standardErrors()[i] > tolerance) {
            BOOST_ERROR("Failed to reproduce linear regression coef."
                << "n    error:     " << m.standardErrors()[i]
            << "n    tolerance: " << tolerance);
        }

        if (std::fabs(m.coefficients()[i]-coeff[i]) > 3*tolerance) {
            BOOST_ERROR("Failed to reproduce linear regression coef."
                << "n    calculated: " << m.coefficients()[i]
            << "n    error:      " << m.standardErrors()[i]
            << "n    expected:   " << coeff[i]);
        }
    }

    // much simpler
    LinearRegression m1(x, y, Real(1.0));

    for (Size i=0; i < m1.dim(); ++i) {
        if (m1.standardErrors()[i] > tolerance) {
            BOOST_ERROR("Failed to reproduce linear regression coef."
                << "n    error:     " << m1.standardErrors()[i]
            << "n    tolerance: " << tolerance);
        }

        if (std::fabs(m1.coefficients()[i]-coeff[i]) > 3*tolerance) {
            BOOST_ERROR("Failed to reproduce linear regression coef."
                << "n    calculated: " << m1.coefficients()[i]
            << "n    error:      " << m1.standardErrors()[i]
            << "n    expected:   " << coeff[i]);
        }
    }
}

void LinearLeastSquaresRegressionTest::test1dLinearRegression() {

    BOOST_TEST_MESSAGE("Testing 1D simple linear least-squares regression...");

    /* Example taken from the QuantLib-User list, see posting
    * Multiple linear regression/weighted regression, Boris Skorodumov */

    SavedSettings backup;

    std::vector<Real> x = {2.4, 1.8, 2.5, 3.0, 2.1, 1.2, 2.0, 2.7, 3.6};
    std::vector<Real> y = {7.8, 5.5, 8.0, 9.0, 6.5, 4.0, 6.3, 8.4, 10.2};

    std::vector<ext::function<Real(Real)>> v = {
        [](Real x) { return 1.0; },
        [](Real x) { return x; }
    };

    LinearRegression m(x, y);

    const Real tol = 0.0002;
    const Real coeffExpected[]  = { 0.9448, 2.6853 };
    const Real errorsExpected[] = { 0.3654, 0.1487 };

    for (Size i=0; i < 2; ++i) {
        if (std::fabs(m.standardErrors()[i]-errorsExpected[i]) > tol) {
            BOOST_ERROR("Failed to reproduce linear regression standard errors"
                << "n    calculated: " << m.standardErrors()[i]
            << "n    expected:   " << errorsExpected[i]                                          
            << "n    tolerance:  " << tol);
        }

        if (std::fabs(m.coefficients()[i]-coeffExpected[i]) > tol) {
            BOOST_ERROR("Failed to reproduce linear regression coef."
                << "n    calculated: " << m.coefficients()[i]
            << "n    expected:   " << coeffExpected[i]
            << "n    tolerance:  " << tol);
        }
    }    

    // an alternative container type 
    boost::circular_buffer<Real> cx(x.begin(), x.end()), cy(y.begin(), y.end());
    LinearRegression m1(cx, cy);

    for (Size i=0; i < 2; ++i) {
        if (std::fabs(m1.standardErrors()[i]-errorsExpected[i]) > tol) {
            BOOST_ERROR("Failed to reproduce linear regression standard errors"
                << "n    calculated: " << m1.standardErrors()[i]
            << "n    expected:   " << errorsExpected[i]                                          
            << "n    tolerance:  " << tol);
        }

        if (std::fabs(m1.coefficients()[i]-coeffExpected[i]) > tol) {
            BOOST_ERROR("Failed to reproduce linear regression coef."
                << "n    calculated: " << m1.coefficients()[i]
            << "n    expected:   " << coeffExpected[i]
            << "n    tolerance:  " << tol);
        }
    }    
}


test_suite* LinearLeastSquaresRegressionTest::suite() {
    auto* suite = BOOST_TEST_SUITE("linear least squares regression tests");
    suite->add(QUANTLIB_TEST_CASE(
        &LinearLeastSquaresRegressionTest::testRegression));
    suite->add(QUANTLIB_TEST_CASE(
        &LinearLeastSquaresRegressionTest::testMultiDimRegression));
    suite->add(QUANTLIB_TEST_CASE(
        &LinearLeastSquaresRegressionTest::test1dLinearRegression));
    return suite;
}


该博文为原创文章,未经博主同意不得转。
本文章博客地址:https://cplusplus.blog.csdn.net/article/details/128364332

最后

以上就是温暖火龙果为你收集整理的C++:实现量化linear least squares regression 线性最小二乘回归测试实例的全部内容,希望文章能够帮你解决C++:实现量化linear least squares regression 线性最小二乘回归测试实例所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(63)

评论列表共有 0 条评论

立即
投稿
返回
顶部