概述
Go有强烈的C背景,除了语法具有继承性外,其设计者以及其设计目标都与C语言有着千丝万缕的联系。在Go与C语言互操作(Interoperability)方面,Go更是提供了强大的支持。尤其是在Go中使用C,你甚至可以直接在Go源文件中编写C代码,这是其他语言所无法望其项背的。
在如下一些场景中,可能会涉及到Go与C的互操作:
1、提升局部代码性能时,用C替换一些Go代码。C之于Go,好比汇编之于C。
2、嫌Go内存GC性能不足,自己手动管理应用内存。
3、实现一些库的Go Wrapper。比如Oracle提供的C版本OCI,但Oracle并未提供Go版本的以及连接DB的协议细节,因此只能通过包装C OCI版本的方式以提供Go开发者使用。
4、Go导出函数供C开发者使用(目前这种需求应该很少见)。
5、Maybe more…
一、Go调用C代码的原理
下面是一个短小的例子:
package main
// #include <stdio.h>
// #include <stdlib.h>
/*
void print(char *str) {
printf("%sn", str);
}
*/
import "C"
import "unsafe"
func main() {
s := "Hello Cgo"
cs := C.CString(s)
C.print(cs)
C.free(unsafe.Pointer(cs))
}
与"正常"Go代码相比,上述代码有几处"特殊"的地方:
1) 在开头的注释中出现了C头文件的include字样
2) 在注释中定义了C函数print
3) import的一个名为C的"包"
4) 在main函数中居然调用了上述的那个C函数-print
没错,这就是在Go源码中调用C代码的步骤,可以看出我们可直接在Go源码文件中编写C代码。
首先,Go源码文件中的C代码是需要用注释包裹的,就像上面的include 头文件以及print函数定义;
其次,import "C"这个语句是必须的,而且其与上面的C代码之间不能用空行分隔,必须紧密相连。这里的"C"不是包名,而是一种类似名字空间的概念,或可以理解为伪包,C语言所有语法元素均在该伪包下面;
最后,访问C语法元素时都要在其前面加上伪包前缀,比如C.uint和上面代码中的C.print、C.free等。
我们如何来编译这个go源文件呢?其实与"正常"Go源文件没啥区别,依旧可以直接通过go build或go run来编译和执行。但实际编译过程中,go调用了名为cgo的工具,cgo会识别和读取Go源文件中的C元素,并将其提取后交给C编译器编译,最后与Go源码编译后的目标文件链接成一个可执行程序。这样我们就不难理解为何Go源文件中的C代码要用注释包裹了,这些特殊的语法都是可以被Cgo识别并使用的。
二、在Go中使用C语言的类型
1、原生类型
* 数值类型
在Go中可以用如下方式访问C原生的数值类型:
C.char,
C.schar (signed char),
C.uchar (unsigned char),
C.short,
C.ushort (unsigned short),
C.int, C.uint (unsigned int),
C.long,
C.ulong (unsigned long),
C.longlong (long long),
C.ulonglong (unsigned long long),
C.float,
C.double
Go的数值类型与C中的数值类型不是一一对应的。因此在使用对方类型变量时少不了显式转型操作,如Go doc中的这个例子:
func Random() int {
return int(C.random())//C.long -> Go的int
}
func Seed(i int) {
C.srandom(C.uint(i))//Go的uint -> C的uint
}
* 指针类型
原生数值类型的指针类型可按Go语法在类型前面加上*,比如var p *C.int。而void*比较特殊,用Go中的unsafe.Pointer表示。任何类型的指针值都可以转换为unsafe.Pointer类型,而unsafe.Pointer类型值也可以转换为任意类型的指针值。unsafe.Pointer还可以与uintptr这个类型做相互转换。由于unsafe.Pointer的指针类型无法做算术操作,转换为uintptr后可进行算术操作。
* 字符串类型
C语言中并不存在正规的字符串类型,在C中用带结尾'