我是靠谱客的博主 清脆咖啡豆,最近开发中收集的这篇文章主要介绍算法之二分查找前言:二分查找二分查找的局限性常见的变总问题总结: 参考资料 ,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

前言:

二分查找

二分查找的局限性

总结: 

 参考资料 


前言:

   二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,很多非计算机专业的同学很容易就能理解,但是看似越简单的东西往往越难掌握好,想要灵活应用就更加困难。


二分查找

二分查找的核心思想是:针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。二分查找的效率有非常高的查询效率,可以保持O(logN)对数级别的时间复杂度.

二分查找最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;

  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }

  return -1;
}

有3个地方是容易出错的。

1. 循环退出

条件注意是 low<=high,而不是 low>1)。

2.mid 的取值

实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。

3.low 和 high 的更新

low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3]不等于 value,就会导致一直循环不退出。

如果你留意我刚讲的这三点,我想一个简单的二分查找你已经可以实现了。实际上,二分查找除了用循环来实现,还可以用递归来实现,过程也非常简单。


// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;

  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}

二分查找的局限性

 前面我们分析过,二分查找的时间复杂度是 O(logn),查找数据的效率非常高。不过,并不是什么情况下都可以用二分查找,它的应用场景是有很大局限性的。那什么情况下适合用二分查找,什么情况下不适合呢?

首先,二分查找依赖的是顺序表结构,简单点说就是数组。

那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。我们在数组和链表那两节讲过,数组按照下标随机访问数据的时间复杂度是 O(1),而链表随机访问的时间复杂度是 O(n)。

所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。

其次,二分查找针对的是有序数据。二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。那针对动态数据集合,如何在其中快速查找某个数据呢?别急,等到二叉树那一节我会详细讲。

再次,数据量太小不适合二分查找。如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为 10 的数组中查找一个元素,不管用二分查找还是顺序遍历,查找速度都差不多。只有数据量比较大的时候,二分查找的优势才会比较明显。不过,这里有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,我都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。最后,数据量太大也不适合二分查找。二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机

常见的变总问题

1.查找第一个值等于给定值的元素

2.查找最后一个值等于给定值的元素

3.查找第一个大于等于给定值的元素

4.查找最后一个小于等于给定值的元素

总结: 

二分查找的核心思想理解起来非常简单,有点类似分治思想。即每次都通过跟区间中的中间元素对比,将待查找的区间缩小为一半,直到找到要查找的元素,或者区间被缩小为 0。

但是二分查找的代码实现比较容易写错。你需要着重掌握它的三个容易出错的地方:循环退出条件、mid 的取值,low 和 high 的更新。

二分查找虽然性能比较优秀,但应用场景也比较有限。底层必须依赖数组,并且还要求数据是有序的。对于较小规模的数据查找,我们直接使用顺序遍历就可以了,二分查找的优势并不明显。二分查找更适合处理静态数据,也就是没有频繁的数据插入、删除操作。

相对于散列表或者二叉查找树,二分查找更适合用在近似查找的问题的问题上。

参考资料 

本章内容来源于对王争大佬的《数据结构与算法之美》的专栏。 

15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?-极客时间

最后

以上就是清脆咖啡豆为你收集整理的算法之二分查找前言:二分查找二分查找的局限性常见的变总问题总结: 参考资料 的全部内容,希望文章能够帮你解决算法之二分查找前言:二分查找二分查找的局限性常见的变总问题总结: 参考资料 所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部