我是靠谱客的博主 着急小懒猪,最近开发中收集的这篇文章主要介绍[学习笔记]线性基,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

概述

网上好像没有什么关于线性基的资料…

定义

设数集 T 的值域范围为[1,2n1]
T 的线性基是T的一个子集 A={a1,a2,a3,...,an}
A 中元素互相xor所形成的异或集合,等价于原数集T的元素互相xor形成的异或集合。
可以理解为将原数集进行了压缩。

性质

1.设线性基的异或集合中不存在 0
2.线性基的异或集合中每个元素的异或方案唯一,其实这个跟性质1是等价的。
3.线性基二进制最高位互不相同。
4.如果线性基是满的,它的异或集合为[1,2n1]
5.线性基中元素互相异或,异或集合不变。

维护

插入

如果向线性基中插入数 x ,从高位到低位扫描它为1的二进制位。
扫描到第 i 时,如果ai不存在,就令 ai=x ,否则 x=xai
x 的结局是,要么被扔进线性基,要么经过一系列操作过后,变成了0

bool insert(long long val)
{
    for (int i=60;i>=0;i--)
        if (val&(1LL<<i))
        {
            if (!a[i])
            {
                a[i]=val;
                break;
            }
            val^=a[i];
        }
    return val>0;
}

合并

将一个线性基暴力插入另一个线性基即可。

L_B merge(const L_B &n1,const L_B &n2)
{
    L_B ret=n1;
    for (int i=0;i<=60;i++)
        if (n2.d[i])
            ret.insert(n2.d[i]);
    return ret;
}

查询

存在性

如果要查询 x 是否存于异或集合中。
从高位到低位扫描x的为 1 的二进制位。
扫描到第i位的时候 x=xai
如果中途 x 变为了0,那么表示 x 存于线性基的异或集合中。

最大值

从高位到低位扫描线性基。
如果异或后可以使得答案变大,就异或到答案中去。

long long query_max()
{
    long long ret=0;
    for (int i=60;i>=0;i--)
        if ((ret^d[i])>ret)
            ret^=d[i];
    return ret;
}

最小值

最小值即为最低位上的线性基。

long long query_min()
{
    for (int i=0;i<=60;i++)
        if (d[i])
            return d[i];
    return 0;
}

k小值

根据性质3。
我们要将线性基改造成每一位相互独立。
具体操作就是如果i<j aj 的第 i 位是1,就将 aj 异或上 ai
经过一系列操作之后,对于二进制的某一位 i 。只有ai的这一位是 1 ,其他都是0
所以查询的时候将k二进制拆分,对于 1 的位,就异或上对应的线性基。
最终得出的答案就是k小值。

void rebuild()
{
    for (int i=60;i>=0;i--)
        for (int j=i-1;j>=0;j--)
            if (d[i]&(1LL<<j))
                d[i]^=d[j];
    for (int i=0;i<=60;i++)
        if (d[i])
            p[cnt++]=d[i];
}
long long kthquery(long long k)
{
    int ret=0;
    if (k>=(1LL<<cnt))
        return -1;
    for (int i=60;i>=0;i--)
        if (k&(1LL<<i))
            ret^=p[i];
    return ret;
}

模板

struct L_B{
    long long d[61],p[61];
    int cnt;
    L_B()
    {
        memset(d,0,sizeof(d));
        memset(p,0,sizeof(p));
        cnt=0;
    }
    bool insert(long long val)
    {
        for (int i=60;i>=0;i--)
            if (val&(1LL<<i))
            {
                if (!d[i])
                {
                    d[i]=val;
                    break;
                }
                val^=d[i];
            }
        return val>0;
    }
    long long query_max()
    {
        long long ret=0;
        for (int i=60;i>=0;i--)
            if ((ret^d[i])>ret)
                ret^=d[i];
        return ret;
    }
    long long query_min()
    {
        for (int i=0;i<=60;i++)
            if (d[i])
                return d[i];
        return 0;
    }
    void rebuild()
    {
        for (int i=60;i>=0;i--)
            for (int j=i-1;j>=0;j--)
                if (d[i]&(1LL<<j))
                    d[i]^=d[j];
        for (int i=0;i<=60;i++)
            if (d[i])
                p[cnt++]=d[i];
    }
    long long kthquery(long long k)
    {
        int ret=0;
        if (k>=(1LL<<cnt))
            return -1;
        for (int i=60;i>=0;i--)
            if (k&(1LL<<i))
                ret^=p[i];
        return ret;
    }
}
L_B merge(const L_B &n1,const L_B &n2)
{
    L_B ret=n1;
    for (int i=60;i>=0;i--)
        if (n2.d[i])
            ret.insert(n1.d[i]);
    return ret;
}

最后

以上就是着急小懒猪为你收集整理的[学习笔记]线性基的全部内容,希望文章能够帮你解决[学习笔记]线性基所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部