概述
本文实例讲述了php计算两个整数的最大公约数常用算法。分享给大家供大家参考。具体如下:
复制代码 代码如下:
<?php
//计时,返回秒
function microtime_float ()
{
list( $usec , $sec ) = explode ( " " , microtime ());
return ((float) $usec + (float) $sec );
}
//////////////////////////////////////////
//欧几里得算法
function ojld($m, $n) {
if($m ==0 && $n == 0) {
return false;
}
if($n == 0) {
return $m;
}
while($n != 0){
$r = $m % $n;
$m = $n;
$n = $r;
}
return $m;
}
//////////////////////////////////////////
//基于最大公约数的定义
function baseDefine($m, $n) {
if($m ==0 && $n == 0) {
return false;
}
$min = min($m, $n);
while($min >= 1) {
if($m % $min == 0){
if($n % $min ==0) {
return $min;
}
}
$min -= 1;
}
return $min;
}
////////////////////////////////////////////
//中学数学里面的计算方法
function baseSchool($m, $n) {
$mp = getList($m); //小于$m的全部质数
$np = getList($n); //小于$n的全部质数
$mz = array(); //保存$m的质因数
$nz = array(); //保存$n的质因数
$mt = $m;
$nt = $n;
//m所有质因数
//遍历m的全部质数,当能够被m整除时,继续下一次整除,知道不能被整除再取下一个能够被m整除
//的质数,一直到所有出现的质数的乘积等于m时停止
foreach($mp as $v) {
while($mt % $v == 0) {
$mz[] = $v;
$mt = $mt / $v;
}
$c = 1;
foreach($mz as $v) {
$c *= $v;
if($c == $m){
break 2;
}
}
}
//n所有质因数
foreach($np as $v) {
while($nt % $v == 0) {
$nz[] = $v;
$nt = $nt / $v;
}
$c = 1;
foreach($nz as $v) {
$c *= $v;
if($c == $n){
break 2;
}
}
}
//公因数
$jj = array_intersect($mz, $nz); //取交集
$gys = array();
//取出在俩数中出现次数最少的因数,去除多余的。
$c = 1; //记录数字出现的次数
$p = 0; //记录上一次出现的数字
sort($jj);
foreach($jj as $key => $v) {
if($v == $p) {
$c++;
}
elseif($p != 0) {
$c = 1;
}
$p = $v;
$mk = array_keys($mz, $v);
$nk = array_keys($nz, $v);
$k = ( count($mk) > count($nk) ) ? count($nk) : count($mk);
if($c > $k) {
unset($jj[$key]);
}
}
$count = 1;
foreach($jj as $value) {
$count *= $value;
}
return $count;
}
//求给定大于等于2的整数的连续质数序列
//埃拉托色尼筛选法
function getList($num) {
$a = array();
$a = array();
for($i = 2; $i <= $num; $i++) {
$a[$i] = $i;
}
for( $i = 2; $i <= floor( sqrt($num) ); $i++ ) {
if($a[$i] != 0) {
$j = $i * $i;
while($j <= $num) {
$a[$j] = 0;
$j = $j + $i;
}
}
}
$p = 0;
for($i = 2; $i <= $num; $i++) {
if($a[$i] != 0) {
$L[$p] = $a[$i];
$p++;
}
}
return $L;
}
/////////////////////////////////////
//test
$time_start = microtime_float ();
//echo ojld(60, 24); //0.0000450611 seconds
//echo baseDefine(60, 24); //0.0000557899 seconds
echo baseSchool(60, 24); //0.0003471375 seconds
$time_end = microtime_float ();
$time = $time_end - $time_start ;
echo '<br>' . sprintf('%1.10f', $time) . 'seconds';
//计时,返回秒
function microtime_float ()
{
list( $usec , $sec ) = explode ( " " , microtime ());
return ((float) $usec + (float) $sec );
}
//////////////////////////////////////////
//欧几里得算法
function ojld($m, $n) {
if($m ==0 && $n == 0) {
return false;
}
if($n == 0) {
return $m;
}
while($n != 0){
$r = $m % $n;
$m = $n;
$n = $r;
}
return $m;
}
//////////////////////////////////////////
//基于最大公约数的定义
function baseDefine($m, $n) {
if($m ==0 && $n == 0) {
return false;
}
$min = min($m, $n);
while($min >= 1) {
if($m % $min == 0){
if($n % $min ==0) {
return $min;
}
}
$min -= 1;
}
return $min;
}
////////////////////////////////////////////
//中学数学里面的计算方法
function baseSchool($m, $n) {
$mp = getList($m); //小于$m的全部质数
$np = getList($n); //小于$n的全部质数
$mz = array(); //保存$m的质因数
$nz = array(); //保存$n的质因数
$mt = $m;
$nt = $n;
//m所有质因数
//遍历m的全部质数,当能够被m整除时,继续下一次整除,知道不能被整除再取下一个能够被m整除
//的质数,一直到所有出现的质数的乘积等于m时停止
foreach($mp as $v) {
while($mt % $v == 0) {
$mz[] = $v;
$mt = $mt / $v;
}
$c = 1;
foreach($mz as $v) {
$c *= $v;
if($c == $m){
break 2;
}
}
}
//n所有质因数
foreach($np as $v) {
while($nt % $v == 0) {
$nz[] = $v;
$nt = $nt / $v;
}
$c = 1;
foreach($nz as $v) {
$c *= $v;
if($c == $n){
break 2;
}
}
}
//公因数
$jj = array_intersect($mz, $nz); //取交集
$gys = array();
//取出在俩数中出现次数最少的因数,去除多余的。
$c = 1; //记录数字出现的次数
$p = 0; //记录上一次出现的数字
sort($jj);
foreach($jj as $key => $v) {
if($v == $p) {
$c++;
}
elseif($p != 0) {
$c = 1;
}
$p = $v;
$mk = array_keys($mz, $v);
$nk = array_keys($nz, $v);
$k = ( count($mk) > count($nk) ) ? count($nk) : count($mk);
if($c > $k) {
unset($jj[$key]);
}
}
$count = 1;
foreach($jj as $value) {
$count *= $value;
}
return $count;
}
//求给定大于等于2的整数的连续质数序列
//埃拉托色尼筛选法
function getList($num) {
$a = array();
$a = array();
for($i = 2; $i <= $num; $i++) {
$a[$i] = $i;
}
for( $i = 2; $i <= floor( sqrt($num) ); $i++ ) {
if($a[$i] != 0) {
$j = $i * $i;
while($j <= $num) {
$a[$j] = 0;
$j = $j + $i;
}
}
}
$p = 0;
for($i = 2; $i <= $num; $i++) {
if($a[$i] != 0) {
$L[$p] = $a[$i];
$p++;
}
}
return $L;
}
/////////////////////////////////////
//test
$time_start = microtime_float ();
//echo ojld(60, 24); //0.0000450611 seconds
//echo baseDefine(60, 24); //0.0000557899 seconds
echo baseSchool(60, 24); //0.0003471375 seconds
$time_end = microtime_float ();
$time = $time_end - $time_start ;
echo '<br>' . sprintf('%1.10f', $time) . 'seconds';
希望本文所述对大家的php程序设计有所帮助。
最后
以上就是无聊钥匙为你收集整理的php计算两个整数的最大公约数常用算法小结的全部内容,希望文章能够帮你解决php计算两个整数的最大公约数常用算法小结所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复