概述
协程
在函数(特殊函数)定义的时候,使用async修饰,函数调用后,内部语句不会立即执行,而是会返回一个协程对象
任务对象
任务对象=高级的协程对象(进一步封装)=特殊的函数
任务对象必须要注册到时间循环对象中
给任务对象绑定回调:爬虫的数据解析中
事件循环
当做是一个装载任务对象的容器
当启动事件循环对象的时候,存储在内的任务对象会异步执行
特殊函数内部不能写不支持异步请求的模块,如time,requests...否则虽然不报错但实现不了异步
time.sleep -- asyncio.sleep
requests -- aiohttp
import asyncio
import time
start_time = time.time()
async def get_request(url):
await asyncio.sleep(2)
print(url,'下载完成!')
urls = [
'www.1.com',
'www.2.com',
]
task_lst = [] # 任务对象列表
for url in urls:
c = get_request(url) # 协程对象
task = asyncio.ensure_future(c) # 任务对象
# task.add_done_callback(...) # 绑定回调
task_lst.append(task)
loop = asyncio.get_event_loop() # 事件循环对象
loop.run_until_complete(asyncio.wait(task_lst)) # 注册,手动挂起
线程池+requests模块
# 线程池
import time
from multiprocessing.dummy import Pool
start_time = time.time()
url_list = [
'www.1.com',
'www.2.com',
'www.3.com',
]
def get_request(url):
print('正在下载...',url)
time.sleep(2)
print('下载完成!',url)
pool = Pool(3)
pool.map(get_request,url_list)
print('总耗时:',time.time()-start_time)
两个方法提升爬虫效率
起一个flask服务端
from flask import Flask
import time
app = Flask(__name__)
@app.route('/bobo')
def index_bobo():
time.sleep(2)
return 'hello bobo!'
@app.route('/jay')
def index_jay():
time.sleep(2)
return 'hello jay!'
@app.route('/tom')
def index_tom():
time.sleep(2)
return 'hello tom!'
if __name__ == '__main__':
app.run(threaded=True)
aiohttp模块+单线程多任务异步协程
import asyncio
import aiohttp
import requests
import time
start = time.time()
async def get_page(url):
# page_text = requests.get(url=url).text
# print(page_text)
# return page_text
async with aiohttp.ClientSession() as s: #生成一个session对象
async with await s.get(url=url) as response:
page_text = await response.text()
print(page_text)
return page_text
urls = [
'http://127.0.0.1:5000/bobo',
'http://127.0.0.1:5000/jay',
'http://127.0.0.1:5000/tom',
]
tasks = []
for url in urls:
c = get_page(url)
task = asyncio.ensure_future(c)
tasks.append(task)
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
print(end-start)
# 异步执行!
# hello tom!
# hello bobo!
# hello jay!
# 2.0311079025268555
'''
aiohttp模块实现单线程+多任务异步协程
并用xpath解析数据
'''
import aiohttp
import asyncio
from lxml import etree
import time
start = time.time()
# 特殊函数:请求的发送和数据的捕获
# 注意async with await关键字
async def get_request(url):
async with aiohttp.ClientSession() as s:
async with await s.get(url=url) as response:
page_text = await response.text()
return page_text # 返回页面源码
# 回调函数,解析数据
def parse(task):
page_text = task.result()
tree = etree.HTML(page_text)
msg = tree.xpath('/html/body/ul//text()')
print(msg)
urls = [
'http://127.0.0.1:5000/bobo',
'http://127.0.0.1:5000/jay',
'http://127.0.0.1:5000/tom',
]
tasks = []
for url in urls:
c = get_request(url)
task = asyncio.ensure_future(c)
task.add_done_callback(parse) #绑定回调函数!
tasks.append(task)
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
print(end-start)
requests模块+线程池
import time
import requests
from multiprocessing.dummy import Pool
start = time.time()
urls = [
'http://127.0.0.1:5000/bobo',
'http://127.0.0.1:5000/jay',
'http://127.0.0.1:5000/tom',
]
def get_request(url):
page_text = requests.get(url=url).text
print(page_text)
return page_text
pool = Pool(3)
pool.map(get_request, urls)
end = time.time()
print('总耗时:', end-start)
# 实现异步请求
# hello jay!
# hello bobo!
# hello tom!
# 总耗时: 2.0467123985290527
小结
爬虫的加速目前掌握了两种方法:
aiohttp模块+单线程多任务异步协程
requests模块+线程池
爬虫接触的模块有三个:
requests
urllib
aiohttp
接触了一下flask开启服务器
以上就是python如何提升爬虫效率的详细内容,更多关于python提升爬虫效率的资料请关注其它相关文章!
最后
以上就是悦耳小鸽子为你收集整理的python做爬虫 怎么样效率最高_python如何提升爬虫效率的全部内容,希望文章能够帮你解决python做爬虫 怎么样效率最高_python如何提升爬虫效率所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复