我是靠谱客的博主 火星上唇膏,最近开发中收集的这篇文章主要介绍Machine Learning- Coursera - Stanford - Programming ExercisesIV. Linear Regression with Multiple Variables (Week 2) Programming Exercise 1VII. Regularization (Week 3)  Programming Exercise 2VIII. Neural Networks: Representation (Week 4)  Programming ,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

IV. Linear Regression with Multiple Variables (Week 2) Programming Exercise 1

1) Warm up exercise  [ warmUpExercise.m ]


 2) Computing Cost (for one variable) [ computeCost.m ]



 3) Gradient Descent (for one variable) [ gradientDescent.m ]



 4) Feature Normalization [ featureNormalize.m ]


 5) Computing Cost (for multiple variables) [ computeCostMulti.m ]


 6) Gradient Descent (for multiple variables) [ gradientDescentMulti.m ]


 7) Normal Equations [ normalEqn.m ]



VII. Regularization (Week 3)  Programming Exercise 2

1) Sigmoid Function  [ sigmoid.m ]


Octave expression:


 2) Logistic Regression Cost [ costFunction.m ]



Vectorization Implementation:


 3) Logistic Regression Gradient [ costFunction.m ]





 4) Predict [ predict.m ]



5)  Regularized Logistic Regression Cost [ costFunctionReg.m ]



not including theta(0) , same as theta(1) in Octave

 6) Regularized Logistic Regression Gradient [ costFunctionReg.m ]



reset the value of grad(1) in line two


5 and 6 can also represented as follows:

VIII. Neural Networks: Representation (Week 4)  Programming Exercise 3

 1) Vectorized Logistic Regression  [ lrCostFunction.m ]


2) One-vs-all classifier training [ oneVsAll.m ]


 3) One-vs-all classifier prediction [ predictOneVsAll.m ]



4) Neural network prediction function [ predict.m ]


IX. Neural Networks: Learning (Week 5)  Programming Exercise 4

1) Feedforward and Cost Function [ nnCostFunction.m ]


 hTheta(x) is the vector with K-dimension
 

 2) Regularized Cost Function [ nnCostFunction.m ]



3) Sigmoid Gradient [ sigmoidGradient.m ]


 4) Neural Network Gradient (Backpropagation) [ nnCostFunction.m ]

cost lots of time.....


 5) Regularized Gradient [ nnCostFunction.m ]


 X. Advice for Applying Machine Learning (Week 6)  Programming Exercise 5

 1) Regularized Linear Regression Cost Function [ linearRegCostFunction.m ]



 2) Regularized Linear Regression Gradient [ linearRegCostFunction.m ]


 3) Learning Curve [ learningCurve.m ]


 4) Polynomial Feature Mapping [ polyFeatures.m ]


 5) Validation Curve [ validationCurve.m ]

not including regularization


 XII. Support Vector Machines (Week 7)  Programming Exercise 6

 1) Gaussian Kernel [ gaussianKernel.m ]



 2) Parameters (C, sigma) for Dataset 3 [ dataset3Params.m ]

calcate the parameters based on training set for every C and sigma pair. Then calcate the cross validation error based on cross validation set for every pair. Choose the minimum pair for cross validation error.


 3) Email Preprocessing [ processEmail.m ]


 4) Email Feature Extraction [ emailFeatures.m ]


 XIV. Dimensionality Reduction (Week 8)  Programming Exercise 7

 1) Find Closest Centroids (k-Means) [ findClosestCentroids.m ]


 2) Compute Centroid Means (k-Means) [ computeCentroids.m ]

vectorization implementation

 3) PCA [ pca.m ]


4) Project Data (PCA) [ projectData.m ]


vectorization implementation

 5) Recover Data (PCA) [ recoverData.m ]



XVI. Recommender Systems (Week 9)  Programming Exercise 8

 1) Estimate Gaussian Parameters [ estimateGaussian.m ]



 2) Select Threshold [ selectThreshold.m ]



3) Collaborative Filtering Cost [ cofiCostFunc.m ]



4) Collaborative Filtering Gradient [ cofiCostFunc.m ]



5) Regularized Cost [ cofiCostFunc.m ]



 6) Regularized Gradient [ cofiCostFunc.m ]





最后

以上就是火星上唇膏为你收集整理的Machine Learning- Coursera - Stanford - Programming ExercisesIV. Linear Regression with Multiple Variables (Week 2) Programming Exercise 1VII. Regularization (Week 3)  Programming Exercise 2VIII. Neural Networks: Representation (Week 4)  Programming 的全部内容,希望文章能够帮你解决Machine Learning- Coursera - Stanford - Programming ExercisesIV. Linear Regression with Multiple Variables (Week 2) Programming Exercise 1VII. Regularization (Week 3)  Programming Exercise 2VIII. Neural Networks: Representation (Week 4)  Programming 所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(35)

评论列表共有 0 条评论

立即
投稿
返回
顶部