概述
毫无基础的人如何入门 Python ?
Python是一种计算机程序设计语言。你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的JavaScript语言等等。
那Python是一种什么语言?首先,我们普及一下编程语言的基础知识。
用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。
而不同的编程语言,干同一个活,编写的代码量,差距也很大。比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。所以Python是一种相当高级的语言。
你也许会问,代码少还不好?代码少的代价是运行速度慢,C程序运行1秒钟,Java程序可能需要2秒,而Python程序可能就需要10秒。那是不是越低级的程序越难学,越高级的程序越简单?
表面上来说,是的,但是,在非常高的抽象计算中,高级的Python程序设计也是非常难学的,所以,高级程序语言不等于简单。但是,对于初学者和完成普通任务,Python语言是非常简单易用的。
连Google都在大规模使用Python,你就不用担心学了会没用。用Python可以做什么?
可以做日常任务,比如自动备份你的MP3;可以做网站,很多著名的网站包括YouTube就是Python写的;可以做网络游戏的后台,很多在线游戏的后台都是Python开发的。总之就是能干很多很多事啦。
Python当然也有不能干的事情,比如写操作系统,这个只能用C语言写;写手机应用,只能用Objective-C(针对iPhone)和Java(针对Android);写3D游戏,最好用C或C++。
如果你是小白用户,满足以下条件:会使用电脑,但从来没写过程序;还记得初中数学学的方程式和一点点代数知识;想从编程小白变成专业的软件架构师;每天能抽出一个半小时学习。可以看下面的代码。
谷歌人工智能写作项目:小发猫
Python该怎么入门?
对于python的入门首先会学习python基础语法,面向对象编程与程序设计模式的理解、python数据分析基础、python网络编程、python并发与高效编程等等c语言视频谁讲得好。
通过前期python学习来了解和掌握常量变量的使用,运算符的使用、流程控制的使用等,最后掌握python编程语言的基础内容。并会对常见数据结构和相应算法进行学习,注重表格的处理,树结构的处理知识。
第二阶段主要学习内容是web页面开发、web页面特效开发、数据持久化开发、linux运维开发、linux测试开发、服务器集群架构等等。
对js的掌握并在网络前端中使用,而且需要详细将js学习并掌握,为将来从事全栈工作打下基础,也会学习linux操作系统的基础知识和掌握linux操作系统常用命令,并会学习linux自动化运维技巧等。
第三阶段主要学习网络爬虫,数据分析加人工智能:这一个阶段需要学习的内容也是比较多的,例如:爬虫与数据、多线程爬虫、go语言、NoSQL数据库、Scrapy-Redis框架。
需要掌握爬虫的工作原理和设计思想,掌握反爬虫机制,并且通过学习NoSQL数据库和Scrapy-Redis框架,并且可以使用分布式爬虫框架实现大量数据的获取。
数据分析和人工智能阶段需要学习的数据分析、人工智能深度学习、量化交易模型、数据分析-特征工程和结果可视化和人工智能机器学习等等。
需要理解随机变量的数字特征的概念和性质,并会利用性质计算随机变量的数字特征,了解可视化过程,图形绘制。并且需要掌握Matplotlib模块、常用的机器学习算法等等。
最后就是对于python的入门学习,我们在学习理论、学习python语法基础的同时我们应该多动手、多联系。但是呢,对于我们零基础的小伙伴呢,一般不建议自学。你肯定要问为什么?我就知道!
原因大概有三点:首先我们自学虽然成本低、学习时间灵活等,但是你想过没,你要自学到就业的程度大概需要多长时间,辞职在家学习,或者买个网课,每天听课、练,你可能需要1年左右,就这你还不一定能够学会、换不一定能够全面掌握企业需要的技术;然后报班学习的学员都已经学完工作半年了。
其次就是学习知识的系统性、前沿性。IT行业的学习一定要系统,不能说我们这里一点那里学一点,完了全是一片一片的知识点,听起来你都有涉及但是真正做项目反而使用不起来,很耽误时间。
其次就是前沿性,学习时一定要选择最新的课程大纲、最新的课程。IT行业的技术更新很快。最后就是就业服务和保障,我们选择报班学习一般都有就业服务,当然我们在学习完也会进行模拟面试和简历指导的等工作。
其次就是服务,一般培训机构都有合作企业来招聘,大大增加了我们的就业机会。总而言之你是零基础选择培训绝对是最快速的转行入门途径!
Python 从入门到精通推荐看哪些书籍呢?
基础篇1.《笨方法学Python》《笨方法学Python》的英文版,最初的几章有点枯燥,但如果把书里面所有代码都敲一遍,确实能够把基础打好。
2.《Python学习手册》这种外国人写的书,都有共同的特点,特别详细,每个知识点给你解释透透的,看的时候可以当作一个字典来翻,这本书确实是面向初学者的。
这本书的前几章是关于python语法的,最后几章是练习案例,但这些案例有点陈旧了,不做也罢。只是看前几章用来入门Python,那么这本书还是不错的。
这本书的前几章是关于python语法的,最后几章是练习案例,但这些案例有点陈旧了,不做也罢。只是看前几章用来入门Python,那么这本书还是不错的。
进阶篇1.《流畅的python》这本书的作者水平有点高,洋洋洒洒写了这么厚一本,关键是读的时候啊,感觉到处都有收获。
前面几章是关于数据结构的,用上合适的数据结构,可以让代码更简洁,也可以让代码执行得更有效率。2.《Python Cookbook》又是一本大部头著作,图灵的书真的挺好,缺点就是太厚了。
cookbook类的书呢,大体遵循的规律是,面对那一个一个具体的问题,我们该怎么办。有点类似Q&A,实操性拉满。这本书还把不同的问题给你分门别类了,查起来挺方便。看过后对于代码质量的提升,很有帮助。
就业篇在就业篇里就需要分方向了。就业通常只学习python语法是不够的,还得掌握具体的学科知识。
1.web方向(1)《Flask Web开发》公司如果用python做web大多是初创的,大多用了flask,因为flask是一个小而美的框架,积累了大量第三方库,值得一学。
(2)《精通Django 3 Web开发》2.人工智能方向(1)《深度学习》深度学习挺有名的书,理论深度足够。俗称“花书”。(2)《利用Python进行数据分析》用python做数据分析就得读这本。
读书破万卷,下笔如有神。这句古话说来是有道理的。学python推荐这些书籍,大家也可以先多去看看,这样对自己接下来的深入学习是十分有帮助的。
如何一步一步学习到网络爬虫技术?
作为零基础的你,我想你可能是想解决工作中的一个实际问题,或者仅仅是很想学习一下爬虫的技术,多一技之长。
其实我准备开始学 Python 爬虫的时候也是一样,老板派了任务,暂时没有人会爬虫,我只有自学顶硬上。因此,我可以用思维图给你理清楚,你应该干什么。
我零基础但我想学网络爬虫:路径1:我不想写代码,Excel/八爪鱼,用这些工具的好处是你可以很快上手,但是只能爬一些简单的网站,一旦网站出现限制,这些方法就是个玩具。
因此,想弄点数据玩玩,玩这些玩具就好。路径2:我可以学写代码,但是会不会很难啊?我以我的经验告诉你,找一个好的老师比自我胡思乱想,自我设限好得多。
写代码这个事不难学,这也是为什么市面上有那么多代码速成的教学。这也是为什么我有些同学1年转专业进 Google 的事情发生。
这里给你描画一下你的学习之路:学会 Python 的基本代码: 假如你没有任何编程基础,时间可能花1-2周,每天3小时。假设你有编程基础(VBA 也算吧),1小时。理解爬虫原理:5分钟。
为什么这么重要?我自认为学一个东西就像建大楼,先弄清楚大框架,然后再从地基学起。很多时候我们的学习是,还没弄懂大框架,就直接看网上的碎片化的教学,或者是跟着网上教学一章一章学,很容易学了芝麻丢了西瓜。
我的自学就在这上面走了很多弯路。应用爬虫原理做一个简单爬虫:30分钟。先吃透获取网页:就是给一个网址发个请求,那么该网址会返回整个网页的数据。
类似:你在浏览器键入网址,回车,然后你就看到了网站的整个页面。再吃透解析网页:就是从整个网页的数据中提取你想要的数据。
类似:你在浏览器中看到网站的整个页面,但是你想找到产品的价格,价格就是你想要的数据。再学会储存数据:存储很简单,就是把数据存下来。
学会这些之后,你可以出去和别人说,我会 Python 爬虫,我想也没有人质疑你了。那么学完这一套下来,你的时间成本是多少呢?如果你有编程基础的话,1周吧。
所以,你是想当爬虫做个玩具玩玩,还是掌握一门实战利器。我觉得你可以自己衡量一下。
如何自学Python?
以下是python全栈开发课程学习路线,可以按照这个课程大纲有规划的进行学习:阶段一:Python开发基础Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
对于Python开发有兴趣的小伙伴们,不妨先从看看Python开发教程开始入门!B站上有很多的Python教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。
也可以自己去看看,下载学习试试。
零基础学Python应该学习哪些入门知识
关于零基础怎么样能快速学好Python的问题,百度提问和解答的都很多,你可以百度下看看。我觉得从个人自学的角度出发,应从以下几个方面来理解:1 为什么选择学python?
据统计零基础或非专业的人士学python的比较多,据HackerRank开发者调查报告2018年5月显示(见图),Python排名第一,成为最受欢迎编程语言。
Python以优雅、简洁著称,入行门槛低,可以从事Linux运维、Python Web网站工程师、Python自动化测试、数据分析、人工智能等职位,薪资待遇呈上涨趋势。
2 入门python需要那些准备?2.1 心态准备。编程是一门技术,也可说是一门手艺。如同书法、绘画、乐器、雕刻等,技艺纯熟的背后肯定付出了长时间的反复练习。不要相信几周速成,也不能急于求成。
编程的世界浩瀚无边,所以请保持一颗敬畏的心态去学习,认真对待写下的每一行代码,甚至每一个字符。收拾好自己的心态,向着编程的世界出发。第一步至关重要,关系到初学者从入门到精通还是从入门到放弃。
选一条合适的入门道路,并坚持走下去。2.2 配置 Python 学习环境。选Python2 还是 Python3?入门时很多人都会纠结。二者只是程序不兼容,思想上并无大差别,语法变动也并不多。
选择任何一个入手,都没有大影响。如果你仍然无法抉择,那请选择 Python3,毕竟这是未来的趋势。编辑器该如何选?
同样,推荐 pycharm 社区版,配置简单、功能强大、使用起来省时省心,对初学者友好,并且完全免费!其他编辑器如:notepad++、sublimeText 3、vim 和 Emacs等不推荐了。
操作环境?Python 支持现有所有主流操作平台,不管是 windows 还是 mac 还是 linux,都能很好的运行 Python。并且后两者都默认自带 Python 环境。
2.3 选择自学的书籍。我推荐的书的内容由浅入深,建议按照先后顺序阅读学习:2.3.1《Python简明教程》。这是一本言简意赅的 Python 入门教程,简单直白,没有废话。
就算没有基础,你也可以像读小说一样,花两天时间就可以读完。适合入门快速了解语法。2.3.2 廖雪峰编写的《Python教程》。
廖先生的教程涵盖了 Python 知识的方方面面,内容更加系统,有一定深度,有一定基础之后学习会有更多的收获。2.4 学会安装包。
Python中有很多扩展包,想要安装这些包可以采用两种方法:2.4.1 使用pip或easy_install。1)在网上找到的需要的包,下载下来。
eg. ;2)解压缩该文件;3)命令行工具cd切换到所要安装的包的目录,找到文件,然后输入python install2.4.2 不用pip或easy_install,直接打开cmd,敲pip install rsa。
3 提升阶段需要恒心和耐力。完成入门阶段的基础学习之后,常会陷入一个瓶颈期,通过看教程很难进一步提高编程水平。这时候,需要的是反复练习,大量的练习。
可以从书上的例题、作业题开始写,再写小程序片段,然后写完整的项目。我们收集了一些练习题和网站。可根据自己阶段,选择适合的练习去做。建议最好挑选一两个系列重点完成,而不是浅尝辄止。3.1 多做练习。
推荐网站练习:crossin编程教室实例:相对于编程教室基础练习着重于单一知识点,编程实例训练对基础知识的融会贯通;hackerrank:Python 部分难度循序渐进,符合学习曲线实验楼:提升编程水平从做项目开始;codewar:社区型编程练习网站,内容由易到难;leetcode:为编程面试准备,对初学者稍难;牛客网:提供 BAT 等大厂笔试题目;codecombat:提供一边游戏一边编程;projecteuler:纯粹的编程练习网站;菜鸟教程100例:基于 py2 的基础练习;3.2 遇到问题多交流。
3.2.1 利用好搜索引擎。3.2.2 求助于各大网站。
推荐stackoverflow:这是一个程序员的知识库;v2ex:国内非常不错的编程社区,不仅仅是包含程序,也包含了程序员的生活;segmentfault:一家以编程问答为主的网站;CSDN、知乎、简书等3.2.3 加入相关的QQ、微信群、百度知道。
不懂的可以随时请教。
学python想自学,需要买什么书或看什么教学视频
Python是一门零基础可以学习的编程语言,也是初学者的首选,相对于入门门槛,因为Python语言清晰、简单易懂、功能强大,不过自学的话,需要根据个人的自学能力来决定,如果基础比较差、学习能力较弱的情况下,自学是非常浪费时间的,很容易事半功倍;而且学习Python单纯的看书或者看视频都是不够的,还需要有大型的项目练手,积累项目经验,才可以起到关键的作用;不过个人建议可以先在B站或者哔哩哔哩上看看Python的视频教程,在决定自己是否要学习,该怎么学习。
如何快速成为数据分析师
诚然,任何一门技术都不可能一蹴而就,更不可能一夜成才。这世上,没有什么牛逼的事情是能够速成的,越是专业、越是基层、收益周期越长的技能越是这样,数据分析师也不例外。
但这并不代表,我们不能通过一些有效的方法,把学习的过程变得高效而有趣,让自己的数据分析师学成之旅起到事半功倍的作用。
倘若真的想一口吃成一个胖子,到时去面试去工作,你会被自己的好不扎实的专业基底伤害得遍体鳞伤。学习数据分析师之前,你必须清楚自己想要达成什么目标。也就是说,你想通过这门技术来解决哪些问题或实现什么计划。
有了这个目标,你才能清晰地开展自己的学习规划,并且明确它的知识体系。只有明确的目标导向,学习必备也是最有用的那部分,才能避免无效信息降低学习效率。
1、明确知识框架和学习路径数据分析这件事,如果你要成为数据分析师,那么你可以去招聘网站看看,对应的职位的需求是什么,一般来说你就会对应该掌握的知识架构有初步的了解。
你可以去看看数据分析师职位,企业对技能需求可总结如下:SQL数据库的基本操作,会基本的数据管理;会用Excel/SQL做基本的数据提取、分析和展示;会用脚本语言进行数据分析,Python or R;有获取外部数据的能力加分,如爬虫或熟悉公开数据集;会基本的数据可视化技能,能撰写数据报告;熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法;高效的学习路径是什么?
就是数据分析的流程。一般大致可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实现一个数据分析师的学成之旅。
按这样的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。
然后每学习一个部分,你就能够有一些实际的成果输出,有正向的反馈和成就感,你才会愿意花更多的时间投入进去。以解决问题为目标,效率自然不会低。
按照上面的流程,我们分需要获取外部数据和不需要获取外部数据两类分析师,总结学习路径如下:1.需要获取外部数据分析师:python基础知识python爬虫SQL语言python科学计算包:pandas、numpy、scipy、scikit-learn统计学基础回归分析方法数据挖掘基本算法:分类、聚类模型优化:特征提取数据可视化:seaborn、matplotlib2.不需要获取外部数据分析师:SQL语言python基础知识python科学计算包:pandas、numpy、scipy、scikit-learn统计学基础回归分析方法数据挖掘基本算法:分类、聚类模型优化:特征提取数据可视化:seaborn、matplotlib接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。
数据获取:公开数据、Python爬虫如果接触的只是企业数据库里的数据,不需要要获取外部数据的,这个部分可以忽略。外部数据的获取方式主要有以下两种。
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。另一种获取外部数据费的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。
基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数(链接的菜鸟教程非常好)……以及如何用成熟的 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。
如果是初学,建议从 urllib 和 BeautifulSoup 开始。
(PS:后续的数据分析也需要 Python 的知识,以后遇到的问题也可以在这个教程查看)网上的爬虫教程不要太多,爬虫上手推荐豆瓣的网页爬取,一方面是网页结构比较简单,二是豆瓣对爬虫相对比较友好。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、模拟用户登录、使用代理、设置爬取频率、使用cookie信息等等,来应对不同网站的反爬虫限制。
除此之外,常用的的电商网站、问答网站、点评网站、二手交易网站、婚恋网站、招聘网站的数据,都是很好的练手方式。这些网站可以获得很有分析意义的数据,最关键的是,有很多成熟的代码,可以参考。
数据存取:SQL语言你可能有一个疑惑,为什么没有讲到Excel。在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。
而且大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也需要懂得SQL的操作,能够查询、提取数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:提取特定情况下的数据:企业数据库里的数据一定是大而繁复的,你需要提取你需要的那一部分。
比如你可以根据你的需要提取2018年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。
数据库的增、删、查、改:这些是数据库最基本的操作,但只要用简单的命令就能够实现,所以你只需要记住命令就好。
数据的分组聚合、如何建立多个表之间的联系:这个部分是SQL的进阶操作,多个表之间的关联,在你处理多维度、多个数据集的时候非常有用,这也让你可以去处理更复杂的数据。
数据预处理:Python(pandas)很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
比如空气质量的数据,其中有很多天的数据由于设备的原因是没有监测到的,有一些数据是记录重复的,还有一些数据是设备故障时监测无效的。比如用户行为数据,有很多无效的操作对分析没有意义,就需要进行删除。
那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。对于数据预处理,学会 pandas 的用法,应对一般的数据清洗就完全没问题了。
需要掌握的知识点如下:选择:数据访问(标签、特定值、布尔索引等)缺失值处理:对缺失数据行进行删除或填充重复值处理:重复值的判断与删除空格和异常值处理:清楚不必要的空格和极端、异常数据相关操作:描述性统计、Apply、直方图等合并:符合各种逻辑关系的合并操作分组:数据划分、分别执行函数、数据重组Reshaping:快速生成数据透视表概率论及统计学知识数据整体分布是怎样的?
什么是总体和样本?中位数、众数、均值、方差等基本的统计量如何应用?如果有时间维度的话随着时间的变化是怎样的?如何在不同的场景中做假设检验?
数据分析方法大多源于统计学的概念,所以统计学的知识也是必不可少的。
需要掌握的知识点如下:基本统计量:均值、中位数、众数、百分位数、极值等其他描述性统计量:偏度、方差、标准差、显著性等其他统计知识:总体和样本、参数和统计量、ErrorBar概率分布与假设检验:各种分布、假设检验流程其他概率论知识:条件概率、贝叶斯等有了统计学的基本知识,你就可以用这些统计量做基本的分析了。
通过可视化的方式来描述数据的指标,其实可以得出很多结论了,比如排名前100的是哪些,平均水平是怎样的,近几年的变化趋势如何……你可以使用python的包 Seaborn(python包)在做这些可视化的分析,你会轻松地画出各种可视化图形,并得出具有指导意义的结果。
了解假设检验之后,可以对样本指标与假设的总体指标之间是否存在差别作出判断,已验证结果是否在可接受的范围。
python数据分析如果你有一些了解的话,就知道目前市面上其实有很多 Python 数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。
比如用 Python 实现不同案例的假设检验,其实你就可以对数据进行很好的验证。比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。
比如DataCastle的训练竞赛“房价预测”和“职位预测”,都可以通过回归分析实现。
这部分需要掌握的知识点如下:回归分析:线性回归、逻辑回归基本的分类算法:决策树、随机森林……基本的聚类算法:k-means……特征工程基础:如何用特征选择优化模型调参方法:如何调节参数优化模型Python 数据分析包:scipy、numpy、scikit-learn等在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类,然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。
这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。系统实战这个时候,你就已经具备了数据分析的基本能力了。但是还要根据不同的案例、不同的业务场景进行实战。
能够独立完成分析任务,那么你就已经打败市面上大部分的数据分析师了。如何进行实战呢?上面提到的公开数据集,可以找一些自己感兴趣的方向的数据,尝试从不同的角度来分析,看看能够得到哪些有价值的结论。
另一个角度是,你可以从生活、工作中去发现一些可用于分析的问题,比如上面说到的电商、招聘、社交等平台等方向都有着很多可以挖掘的问题。
开始的时候,你可能考虑的问题不是很周全,但随着你经验的积累,慢慢就会找到分析的方向,有哪些一般分析的维度,比如top榜单、平均水平、区域分布、年龄分布、相关性分析、未来趋势预测等等。
随着经验的增加,你会有一些自己对于数据的感觉,这就是我们通常说的数据思维了。你也可以看看行业的分析报告,看看优秀的分析师看待问题的角度和分析问题的维度,其实这并不是一件困难的事情。
在掌握了初级的分析方法之后,也可以尝试做一些数据分析的竞赛,比如 DataCastle 为数据分析师专门定制的三个竞赛,提交答案即可获取评分和排名:员工离职预测训练赛美国King County房价预测训练赛北京PM2.5浓度分析训练赛种一棵树最好的时间是十年前,其次是现在。
现在就去,找一个数据集开始吧!!
Python自学可以吗?
当然可以自学。Python是一门相对来说比较简单的编程语言,自学完全ok。但是,对于自学的话,看你是否有基础。
总体来说分为三步,第一,如果你是没接触过编程的人,那你就要把编程的硬知识学会了,一些语句,逻辑关系。
因为这些是你以后进行写代码的基础,当然生硬硬的语句可能一下子全部记住也是有些难度的,你也可以在以后的边练习边熟练。第二步就是看一些写好的东西,自己模拟做一下,将第一步所学的东西用起来,加深理解。
第三步可以自己写一些,总之是一个不断学习的过程。具体一点而言,你可以这样学python:1、学习py要有针对性,目的性。
不要漫无目的地学,py功能很强大,能应用到的场景很多,比如做网页,做游戏,做界面,做数据分析,统计分析,深度学习,机器学习等等不一一例举(大神们不要吐槽我说法不专业,毕竟这是针对没有任何编程基础的人。
)看你自己的需求是什么再去学什么。 2、现用现学。这是我个人的学习方法,供大家参考。
我是先学一遍基础教程,然后在量化平台开始数据分析,用到什么不会再去补什么,比如数据分析用到pandas,我再去学pandas。哪怕是基础知识,当用到时发觉忘记了回头复习巩固是常有之事。
只有追着自己想要的东西去学,学会了才有成就感,有动力继续下去。这好比你追求妹子,每日负责接送,送花送包包,一段时间后,妹子和你牵手了,你才有成就感,才有动力追下去。
不信你可以做一下各种py基础教程的练习题,做起来不是那么有趣,有点做奥赛题的感觉,很伤脑筋,你又不知道跟自己想要的有什么关系,你很快会觉得无聊。
但大家对于基础课程要坚持,练习题可以不做,但你要保证自己至少看懂了教程的内容。所以,学习python是不难的,关键还是要有目的还有恒心,三天晒网两天打鱼这样肯定是不成的。
相关链接:
1、如何设计神经网络结构图,神经网络设计与实现
2、vue3 语法糖获取axios返回值,vue3语法和vue2语法区别
3、typescript 中文文档,typescript完全解读
4、什么是神经元网络控制?,神经网络控制结构包括
5、图神经网络好发论文吗,图神经网络前景如何
最后
以上就是幸福纸飞机为你收集整理的超级简单的Python爬虫教程,python爬虫菜鸟教程官网的全部内容,希望文章能够帮你解决超级简单的Python爬虫教程,python爬虫菜鸟教程官网所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复