我是靠谱客的博主 虚幻洋葱,最近开发中收集的这篇文章主要介绍Python网络爬虫——并发下载,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

如果要爬取一个大型网站时,串行下载显然已经不再适用,所以使用并发下载,用多线程和多进程这来嗯中下载网页的方式。
测试环境
Alexa提供了最受欢迎的100万个网站列表,
网址http://www.alexa.com/topsites
也可以通过http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
直接下载这一列表的压缩文件。
解析Alexa列表
抽取数据的步骤:

  • 下载.zip文件;
  • 从.zip文件中提取CSV文件;
  • 解析CSV文件;
  • 遍历CSV文件中的每一行,从中抽取出域名数据;
import csv
from zipfile import ZipFile

from DownLoad import Downloader
from StringIO import StringIO


#实例化一个下载的对象
D=Downloader()


# 下载列表的压缩包
zipped_data=D('http://s3.amazonaws.com/alexa-static/top-1m.csv.zip')
urls=[]


# ZipFile需要一个类似文件的接口,所以使用StringIO封装
# StringIO主要用于在内存缓冲区中读写数据
with ZipFile(StringIO(zipped_data)) as zf:
    # 从文件列表中提取CSV文件的名称
    csv_filename=zf.namelist()[0]

    for _,website in csv.reader(zf.open(csv_filename)):
        
        # 使域名合法
        urls.append('http://' + website)

如果想在之前开发的爬虫中复用上述功能,需要修改scrape_callback接口:

import csv
from zipfile import ZipFile
from mongo_02 import MongoCache
from StringIO import StringIO


class AlexaCallback:
    def __init__(self,max_urls=1000):
        self.max_urls=max_urls
        self.seed_url='http://s3.amazonaws.com/alexa-static/top-1m.csv.zip'


    def __call__(self, url,html):
        if url==self.seed_url:
            urls=[]
            cache=MongoCache()
            with ZipFile(StringIO(html)) as zf:
                csv_filename=zf.namelist()[0]

                for _,website in csv.reader(zf.open(csv_filename)):
                    if 'http://' + website not in cache:
                        urls.append('http://' + website)
                        if len(urls) == self.max_urls:
                            break

            return urls

串行爬虫

import time

from Link_crawler import link_crawler
from mongo_02 import MongoCache
from alexa_cb import AlexaCallback

def main():
    scrape_callback=AlexaCallback()
    bigcache=MongoCache()
    link_crawler(scrape_callback.seed_url,cache=bigcache,scrape_callback=scrape_callback)



if __name__=='__main__':
    start = time.time()
    main()
    print "the app run:%s" % (time.time() - start)

这里写图片描述
多线程爬取

# coding:utf-8
import threading

import time
import urlparse

from DownLoad import Downloader

SLEEP_TIME=1
def threaded_crawer(seed_url,delay=5,cache=None,scrape_callback=None,
                    user_agent='wswp',proxies=None,num_retries=1,
                    max_threads=10,timeout=60):

    crawl_queue=[seed_url]
    seen=set([seed_url])

    D=Downloader(cache=cache,delay=delay,user_agent=user_agent,
                 proxies=proxies,num_retries=num_retries,timeout=timeout)

    def process_queue():
        while True:
            try:
                url=crawl_queue.pop()

            except IndexError:
                break
            else:
                html=D(url)
                if scrape_callback:
                    try:
                        links=scrape_callback(url,html) or []
                    except Exception as e:
                        print 'Error in callback for:{}:{}'.format(url,e)
                    else:
                        for link in links:
                            link=normalize(seed_url,link)
                            seen.add(link)
                            crawl_queue.append(link)
    #
    threads=[]
    while threads or crawl_queue:
        # 将没有在用的线程全部删除,以防不执行,却使线程数达到最大
        for thread in threads:
            if not thread.is_alive():

                threads.remove(thread)
        # 当前活跃的线程数小于最大线程数并且链接队列不为空时继续爬取
        while len(threads) < max_threads and crawl_queue:

            # 产生一个线程
            thread=threading.Thread(target=process_queue)
            thread.setDaemon(True) #设置守护线程,设定守护线程时, 主线程执行结束, 子线程也结束;
            thread.start() #启动线程
            threads.append(thread)

        # 模拟线程阻塞,使用多线程功能
        time.sleep(SLEEP_TIME)

def normalize(seed_url,link):
    """将链接格式补充完整"""
    link,_=urlparse.urldefrag(link)
    return urlparse.urljoin(seed_url,link)

多进程爬虫
目前,爬虫队列都是存储在本地内存当中,其他进程都无法处理这个爬虫。为了解决该问题,需要把爬虫队列转移到MongoDB当中。单独存储队列,意味着即使是不同的服务器也能够协同处理同一爬虫任务。

# coding:utf-8
from datetime import datetime, timedelta
from pymongo import MongoClient, errors


class MongoQueue:

    OUTSTANDING,PROCESSING,COMPLETE=range(3)


    def __init__(self,client=None,timeout=300):

        self.client=MongoClient() if client is None else client
        self.db=self.client.cache
        self.timeout=timeout

    def __nonzero__(self):

        #如果还有进程在工作或者还有未完成的进程就返回True
        record=self.db.craw_queue.find_one(
            {'status':{'$ne':self.COMPLETE}}
        )

        return True if record else False

    def push(self,url):
        """将新的url添加到数据库,如果已经则什么都不做"""
        try:
            self.db.craw_queue.insert({'_id':url,'status':self.OUTSTANDING})
        except errors.DuplicateKeyError as e:
            pass

    def pop(self):
        """获取状态为outstanging的url,将它的状态设置为processing,并且加上当前时间
        以便判断这个进程有效期"""
        record=self.db.craw_queue.find_and_modify(
            query={'status':self.OUTSTANDING},
            update={'$set':{'status':self.PROCESSING,
                            'timestamp':datetime.now()}}
        )

        #如果存在这样的进程就返回它的id
        if record:
            return record['_id']

        #如果没有就将释放一些空闲的进程
        else:
            self.repair()
            raise KeyError()

    def repair(self):
        """释放进程"""


        #将到期并且状态为complete的进程状态设置为outstanging
        record=self.db.craw_queue.find_and_modify(
            query={
                'timestamp':{'$lt':datetime.now() -
                             timedelta(seconds=self.timeout)},
                'status':{'$ne':self.COMPLETE}
            },
            update={'$set':{'status':self.OUTSTANDING}}
        )

        if record:
            print 'Relesed:',record['_id']


    def complete(self,url):

        # 将传入的url进程状态设置为完成状态
        self.db.craw_queue.update({'_id':url},{'$set':{'status':self.COMPLETE}})

当添加一个新的URL时,其状态为OUTSTANDING;当URL从队列中去除准备下载时其状态为PROCESSING;当下在结束后,其状态为COMPLETE。如果下载超时,就repair()将状态重新设为OUTSTANDING,以便再次处理。

# coding:utf-8


import threading

import time
import urlparse

import multiprocessing

from DownLoad import Downloader
from mondo_03 import MongoQueue

SLEEP_TIME=1
def threaded_crawer(seed_url,delay=5,cache=None,scrape_callback=None,
                    user_agent='wswp',proxies=None,num_retries=1,
                    max_threads=10,timeout=60):

    crawl_queue=MongoQueue()
    crawl_queue.clear()
    crawl_queue.push(seed_url)

    D=Downloader(cache=cache,delay=delay,user_agent=user_agent,
                 proxies=proxies,num_retries=num_retries,timeout=timeout)

    def process_queue():
        while True:
            try:
                url=crawl_queue.pop()

            except IndexError:
                break
            else:
                html=D(url)
                if scrape_callback:
                    try:
                        links=scrape_callback(url,html) or []
                    except Exception as e:
                        print 'Error in callback for:{}:{}'.format(url,e)
                    else:
                        for link in links:
                            link=normalize(seed_url,link)
                            crawl_queue.push(link)
                crawl_queue.complete(url)
    #
    threads=[]
    while threads or crawl_queue:
        # 将没有在用的线程全部删除,以防不执行,却使线程数达到最大
        for thread in threads:
            if not thread.is_alive():

                threads.remove(thread)
        # 当前活跃的线程数小于最大线程数并且链接队列不为空时继续爬取
        while len(threads) < max_threads and crawl_queue:

            # 产生一个线程
            thread=threading.Thread(target=process_queue)
            thread.setDaemon(True) #设置守护线程,设定守护线程时, 主线程执行结束, 子线程也结束;
            thread.start() #启动线程
            threads.append(thread)

        # 模拟线程阻塞,使用多线程功能
        time.sleep(SLEEP_TIME)

def process_crawler(args,**kwargs):

    # 获取当前计算机的cpu数量
    num_cpus=multiprocessing.cpu_count()

    print 'Starting{} processes'.format(num_cpus)

    processes=[]
    for i in range(num_cpus):
        p=multiprocessing.Process(target=threaded_crawer,args=[args],kwargs=kwargs)
        p.start()
        processes.append(p)

    for p in processes:
        p.join()


def normalize(seed_url,link):
    """将链接格式补充完整"""
    link,_=urlparse.urldefrag(link)
    return urlparse.urljoin(seed_url,link)

改动将Python内建队列替换成基于MongoDB的新队列,命名为MongoQueue。由于该队列会在内部实现中处理重复URL的问题,所以不再需要seen变量。最后调用complete方法,用于记录该URL已经被成功解析。
再构建一个对进程处理,类似于多线程处理方法。

最后

以上就是虚幻洋葱为你收集整理的Python网络爬虫——并发下载的全部内容,希望文章能够帮你解决Python网络爬虫——并发下载所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部