概述
点击上方,选择星标或置顶,不定期资源大放送!
阅读大概需要9分钟
Follow小博主,每天更新前沿干货
【导读】本文为大家收集整理了KDD 2020 会议上推荐系统方面的一些论文汇总。
ACM SIGKDD(国际数据挖掘与知识发现大会,简称KDD)是数据科学界最重要的会议,由ACM的数据挖掘及知识发现专委会(SIGKDD)主办,是CCF A类会议。每年大会都汇聚了来自数据科学、数据挖掘、知识发现、大规模数据分析和大数据的研究人员和从业者。自 1995 年以来,KDD 已经连续举办了二十余届大会,今年是第26届。今年的 KDD 大会将于 2020 年 8 月 23 日 ~27 日在美国美国加利福尼亚州圣地亚哥举行。其中今年的Research Track接受率为216/1279=16.8%。
论文链接:https://www.kdd.org/kdd2020/accepted-papers
推荐系统论文列表
这次整理的推荐系统论文列表分为了Research Track和Applied Data Science Track,即面向研究型的学术论文和面向工业界的实践论文。
Research Track Papers
研究赛道的论文主要是按照推荐子领域来划分,比如序列化推荐、对话推荐系统、冷启动问题、协同过滤、推荐效率问题等。从以下比例可以看出,序列化推荐和对话推荐系统是研究的热点问题,这其实也很容易理解,推荐其实是个天然的序列问题,即建模用户的一系列行为同时返回一系列个性化的物品序列;同时,推荐系统也自然的引入对话机制,因为传统的推荐是静态的,用户只能被动的接受着推荐系统返回的结果列表,引入对话交互机制后,能很好的优化推荐系统。
1. Disentangled Self-Supervision in Sequential Recommenders
Authors: Jianxin Ma: Alibaba Group; Tsinghua University; Chang Zhou: Alibaba Group; Hongxia Yang: Alibaba Group; Cui Peng: Tsinghua University; Xin Wang: Tsinghua University; Wenwu Zhu: Tsinghua University
阿里巴巴在本文提出了一种让机器更懂人类的方法,可实现长远预测。该论文提出预测人类行为的训练思路,融合解纠缠表征的技术和自监督对比学习技术,突破了目前主流推荐算法依赖于过往数据做预测而无法进行精准、长远推理的局限。
2.Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions
Authors: James McInerney: Netflix; Brian Brost: Spotify; Praveen Chandar: Spotify; Rishabh Mehrotra: Spotify; Ben Carterette: Spotif
3. Geography-Aware Sequential Location Recommendation
Authors: Defu Lian: University of Science and Technology of China; Yongji Wu: University of Science and Technology of China; Yong Ge: University of Arizona; Xing Xie: Microsoft Research Asia; Enhong Chen: University of Science and Technology of China
4. Handling Information Loss of Graph Neural Networks for Session-based Recommendation
Authors: Tianwen Chen: The Hong Kong University of Science and Technology; Raymond Chi-Wing Wong: The Hong Kong University of Science and Technology
5. On Sampling Top-K Recommendation Evaluation
Authors: Dong Li: Kent State University; Ruoming Jin: Kent State University; Jing Gao: iLambda; Zhi Liu: iLambda
6. Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation
Authors: Chen Ma: McGill University; Liheng Ma: McGill University; Yingxue Zhang: Huawei Technologies Canada; Ruiming Tang: Huawei Noah's Ark Lab; Xue Liu: McGill University; Mark Coates: McGill University
7. Evaluating Conversational Recommender Systems via User Simulation
Authors: Shuo Zhang: University of Stavanger; Krisztian Balog: University of Stavanger
8. Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion
Authors: Kun Zhou: Peking University; Xin Zhao: Renmin University of China, School of Information; Shuqing Bian: Renmin University of China; Yuanhang Zhou: Xidian University; Ji-Rong Wen: Renmin University; Jingsong Yu: Peking University
9. Interactive Path Reasoning on Graph for Conversational Recommendation
Authors: Wenqiang Lei: National University of Singapore; Gangyi Zhang: University of Science and Technology of China; Xiangnan He: University of Science and Technology of China; Yisong Miao: National University of Singapore; Xiang Wang: National University of Singapore; Liang Chen: Sun Yat-Sen University; Tat-Seng Chua: National University of Singapore
10. MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation
Authors: Manqing Dong: University of New South Wales; Feng Yuan: University of New South Wales; Lina Yao: University of New South Wales; Xiwei Xu: Data 61; Liming Zhu: Data 61
11. Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation
Authors: Yuanfu Lu: Beijing University of Posts and Telecommunications; Yuan Fang: Singapore Management University; Chuan Shi: Beijing University of Posts and Telecommunications
12. Dual Channel Hypergraph Collaborative Filtering
Authors: Shuyi Ji: Tsinghua University; Yifan Feng: Xiamen University; Rongrong Ji: Xiamen University; Xibin Zhao: Tsinghua University; Wanwan Tang: Baidu, Inc.; Yue Gao: Tsinghua University
13. Semi-supervised Collaborative Filtering by Text-enhanced Domain Adaptation
Authors: Wenhui Yu: Tsinghua University; Xiao Lin: Alibaba Group; Junfeng Ge: Alibaba Group; Wenwu Ou: Alibaba Group; Zheng Qin: Tsinghua University
14. An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph
Authors: Jiarui Jin: Shanghai Jiao Tong University; Jiarui Qin: Shanghai Jiao Tong University; Yuchen Fang: Shanghai Jiao Tong University; Kounianhua Du: Shanghai Jiao Tong University; Weinan Zhang: Shanghai Jiao Tong University; Yong Yu: Shanghai Jiao Tong University; Zheng Zhang: Amazon; Alexander Smola: Amazon
15. Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems
Authors: Hao-Jun Shi: Northwestern University; Dheevatsa Mudigere: Facebook; Maxim Naumov: Facebook; Jiyan Yang: Facebook
16. FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems
Authors: Khalil Muhammad: Insight Centre for Data Analytics, University College Dublin; Qinqin Wang: Insight Centre for Data Analytics, University College Dublin; Diarmuid O' Reilly-Morgan: Insight Centre for Data Analytics, University College Dublin; Elias Tragos: Insight Centre for Data Analytics, University College Dublin; Barry Smyth: Insight Centre for Data Analytics, University College Dublin; Neil Hurley: Insight Centre for Data Analytics, University College Dublin; James Geraci: Samsung Electronics; Aonghus Lawlor: Insight Centre for Data Analytics, University College Dublin
17. A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks
Authors: Jianing Sun: Huawei Technologies Canada; Wei Guo: Huawei Noah's Ark Lab; Dengcheng Zhang: Huawei Distributed and Parallel Software Lab; Yingxue Zhang: Huawei Technologies Canada; Florence Robert-Regol: McGill University; Yaochen Hu: Huawei Technologies Canada; Huifeng Guo: Huawei Noah's Ark Lab; Ruiming Tang: Huawei Noah's Ark Lab; Han Yuan: Huawei Distributed and Parallel Software Lab; Xiuqiang He: Huawei Noah's Ark Lab; Mark Coates: McGill University
18. BLOB: A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals
Authors: Otmane Sakhi: Criteo; Stephen Bonner: Durham University; David Rohde: Criteo; Flavian Vasile: Criteo
19. Joint Policy-Value Learning for Recommendation
Authors: Olivier Jeunen: University of Antwerp; David Rohde: Criteo; Flavian Vasile: Criteo; Martin Bompaire: Criteo
20. On Sampled Metrics for Item Recommendation
Authors: Walid Krichene: Google; Steffen Rendle: Google
Applied Data Science Track Papers
应用数据科学赛道主要是展示工业界中的实践成果,我们按照公司维度整理出了涉及推荐场景的论文,其中包括谷歌、阿里、亚马逊等公司,这些公司由于有着海量的用户数据,因此推荐技术也相对成熟,许多经典模型也是由以下公司所提出的。
1. Google
Attribute-based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies
Improving Recommendation Quality in Google Drive
Neural Input Search for Large Scale Recommendation Models
2. Alibaba
Controllable Multi-Interest Framework for Recommendation
M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems
Maximizing Cumulative User Engagement in Sequential Recommendation: An Online Optimization Perspective
Privileged Features Distillation at Taobao Recommendations -Alibaba
3. Amazon
Temporal-Contextual Recommendation in Real-Time
4. Pinterest
PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest -Pinterest
5. Bytedance
Jointly Learning to Recommend and Advertise -Bytedance
6. DiDiChuxing
Gemini: A novel and universal heterogeneous graph information fusing framework for online recommendations
7. Twitter
SimClusters: Community-Based Representations for Heterogeneous Recommendations at Twitter
欢迎添加群助手微信,邀请您加入大佬云集-机器学习技术交流群!
???? 长按识别添加,邀请您进群!
最后
以上就是威武悟空为你收集整理的【KDD 2020】推荐系统领域论文汇总的全部内容,希望文章能够帮你解决【KDD 2020】推荐系统领域论文汇总所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复