概述
常用代码片段及技巧
自动选择GPU和CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model and tensor to device
vgg = models.vgg16().to(device)
切换当前目录
import os
try:
os.chdir(os.path.join(os.getcwd(), '..'))
print(os.getcwd())
except:
pass
打印模型参数
from torchsummary import summary
# 1 means in_channels
summary(model, (1, 28, 28))
将tensor的列表转换为tensor
x = torch.stack(tensor_list)
内存不够
Smaller batch size
torch.cuda.empty_cache()every few minibatches
debug tensor memory
resource` module is a Unix specific package as seen in https://docs.python.org/2/library/resource.html which is why it worked for you in Ubuntu, but raised an error when trying to use it in Windows.
Here is what solved it for me.
Downgrade to the Apache Spark 2.3.2 prebuild version
Install (or downgrade) jdk to version 1.8.0
My installed jdk was 1.9.0, which doesn't seem to be compatiable with spark 2.3.2 or 2.4.0
make sure that when you run java -version in cmd (command prompt), it show java version 8. If you are seeing version 9, you will need to change your system ENV PATH to ensure it points to java version 8.
Check this link to get help on changing the PATH if you have multiple java version installed.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def debug_memory():
import collections, gc, resource, torch
print('maxrss = {}'.format(
resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
tensors = collections.Counter((str(o.device), o.dtype, tuple(o.shape))
for o in gc.get_objects()
if torch.is_tensor(o))
for line in sorted(tensors.items()):
print('{} {}'.format(*line))
# example
import tensor
x = torch.tensor(3,3)
debug_memory()
y = torch.tensor(3,3)
debug_memory()
z = [torch.randn(i).long() for i in range(10)]
debug_memory()
最后
以上就是呆萌指甲油为你收集整理的python常用代码总结-python常用代码的全部内容,希望文章能够帮你解决python常用代码总结-python常用代码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复