我是靠谱客的博主 健忘蓝天,最近开发中收集的这篇文章主要介绍Python爬虫+数据可视化教学:分析猫咪交易数据前言爬虫部分数据可视化部分,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前言

各位,七夕快到了,想好要送什么礼物了吗?

昨天有朋友私信我,问我能用Python分析下网上小猫咪的数据,是想要送一只给女朋友,当做礼物。

Python从零基础入门到实战系统教程、源码、视频

网上的数据太多、太杂,而且我也不知道哪个网站的数据比较好。所以,只能找到一个猫咪交易网站的数据来分析了

地址:

http://www.maomijiaoyi.com/

 

爬虫部分

请求数据

import requests

url = f'http://www.maomijiaoyi.com/index.php?/chanpinliebiao_c_2_1--24.html'
headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response.text)

解析数据

# 把获取到的 html 字符串数据转换成 selector 对象 这样调用
selector = parsel.Selector(response.text)
# css 选择器只要是根据标签属性内容提取数据 编程永远不看过程 只要结果
href = selector.css('.content:nth-child(1) a::attr(href)').getall()
areas = selector.css('.content:nth-child(1) .area .color_333::text').getall()
areas = [i.strip() for i in areas] # 列表推导式

提取标签数据

for index in zip(href, areas):
    # http://www.maomijiaoyi.com/index.php?/chanpinxiangqing_224383.html
    index_url = 'http://www.maomijiaoyi.com' + index[0]
    response_1 = requests.get(url=index_url, headers=headers)
    selector_1 = parsel.Selector(response_1.text)
    area = index[1]
    # getall 取所有 get 取一个
    title = selector_1.css('.detail_text .title::text').get().strip()
    shop = selector_1.css('.dinming::text').get().strip()  # 店名
    price = selector_1.css('.info1 div:nth-child(1) span.red.size_24::text').get()  # 价格
    views = selector_1.css('.info1 div:nth-child(1) span:nth-child(4)::text').get()  # 浏览次数
    # replace() 替换
    promise = selector_1.css('.info1 div:nth-child(2) span::text').get().replace('卖家承诺: ', '')  # 浏览次数
    num = selector_1.css('.info2 div:nth-child(1) div.red::text').get()  # 在售只数
    age = selector_1.css('.info2 div:nth-child(2) div.red::text').get()  # 年龄
    kind = selector_1.css('.info2 div:nth-child(3) div.red::text').get()  # 品种
    prevention = selector_1.css('.info2 div:nth-child(4) div.red::text').get()  # 预防
    person = selector_1.css('div.detail_text .user_info div:nth-child(1) .c333::text').get()  # 联系人
    phone = selector_1.css('div.detail_text .user_info div:nth-child(2) .c333::text').get()  # 联系方式
    postage = selector_1.css('div.detail_text .user_info div:nth-child(3) .c333::text').get().strip()  # 包邮
    purebred = selector_1.css(
        '.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(1) .c333::text').get().strip()  # 是否纯种
    sex = selector_1.css(
        '.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(4) .c333::text').get().strip()  # 猫咪性别
    video = selector_1.css(
        '.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(4) .c333::text').get().strip()  # 能否视频
    worming = selector_1.css(
        '.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(2) .c333::text').get().strip()  # 是否驱虫
    dit = {
        '地区': area,
        '店名': shop,
        '标题': title,
        '价格': price,
        '浏览次数': views,
        '卖家承诺': promise,
        '在售只数': num,
        '年龄': age,
        '品种': kind,
        '预防': prevention,
        '联系人': person,
        '联系方式': phone,
        '异地运费': postage,
        '是否纯种': purebred,
        '猫咪性别': sex,
        '驱虫情况': worming,
        '能否视频': video,
        '详情页': index_url,
    }

保存数据

import csv # 内置模块

f = open('猫咪1.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['地区', '店名', '标题', '价格', '浏览次数', '卖家承诺', '在售只数',
                                           '年龄', '品种', '预防', '联系人', '联系方式', '异地运费', '是否纯种',
                                           '猫咪性别', '驱虫情况', '能否视频', '详情页'])
csv_writer.writeheader() # 写入表头
csv_writer.writerow(dit)
print(title, area, shop, price, views, promise, num, age,
      kind, prevention, person, phone, postage, purebred, sex, video, worming, index_url, sep=' | ')    

得到数据

数据可视化部分

词云图

from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
from pyecharts.globals import ThemeType


words = [(i,1) for i in cat_info['品种'].unique()]
c = (
    WordCloud(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add("", words,shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title=""))
)
c.render_notebook()

交易品种占比图

from pyecharts import options as opts
from pyecharts.charts import TreeMap

pingzhong = cat_info['品种'].value_counts().reset_index()
data = [{'value':i[1],'name':i[0]} for i in zip(list(pingzhong['index']),list(pingzhong['品种']))]

c = (
    TreeMap(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add("", data)
    .set_global_opts(title_opts=opts.TitleOpts(title=""))
    .set_series_opts(label_opts=opts.LabelOpts(position="inside"))
)

c.render_notebook()

均价占比图

from pyecharts import options as opts
from pyecharts.charts import PictorialBar
from pyecharts.globals import SymbolType

location = list(price['品种'])
values = list(price['价格'])

c = (
    PictorialBar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(location)
    .add_yaxis(
        "",
        values,
        label_opts=opts.LabelOpts(is_show=False),
        symbol_size=18,
        symbol_repeat="fixed",
        symbol_offset=[0, 0],
        is_symbol_clip=True,
        symbol=SymbolType.ROUND_RECT,
    )
    .reversal_axis()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="均价排名"),
        xaxis_opts=opts.AxisOpts(is_show=False),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(opacity=0),
            
            ),
        ),
    )
    .set_series_opts(
        label_opts=opts.LabelOpts(position='insideRight')
    )
)

c.render_notebook()

猫龄柱状图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

x = ['1-3个月','3-6个月','6-9个月','9-12个月','1年以上']
y = [69343,115288,18239,4139,5]

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(x)
    .add_yaxis('', y)
    .set_global_opts(title_opts=opts.TitleOpts(title="猫龄分布"))
)

c.render_notebook()

最后

以上就是健忘蓝天为你收集整理的Python爬虫+数据可视化教学:分析猫咪交易数据前言爬虫部分数据可视化部分的全部内容,希望文章能够帮你解决Python爬虫+数据可视化教学:分析猫咪交易数据前言爬虫部分数据可视化部分所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(117)

评论列表共有 0 条评论

立即
投稿
返回
顶部