我是靠谱客的博主 沉默星月,最近开发中收集的这篇文章主要介绍Spring源码深度解析:十、bean的属性注入④ - populateBean一、前言二、属性填充入口- populateBean三、populateBean - 概述四、populateBean - 详解五、关于自动装配六、总结,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一、前言

文章目录:Spring源码深度解析:文章目录

这篇文章是接着 Spring源码深度解析:八、bean的获取② - getSingleton 的继续分析过程。Spring在 AbstractAutowireCapableBeanFactory#doCreateBean()方法中,完成了bean的完整创建。而在上篇 Spring源码深度解析:九、bean的获取③ - createBeanInstance 中,完成了Bean的创建,但是属性内容还没有注入,本文就是将bean的属性进行注入的过程。

本文涉及部分 BeanPostProcessor 内容,如需详阅 :Spring源码深度解析:后处理器 BeanPostProcessor

二、属性填充入口- populateBean

在这里插入图片描述
在这里插入图片描述
AbstractAutowireCapableBeanFactory#doCreateBean()

// 创建Bean的核心方法
	protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
			throws BeanCreationException {

		// 实例化Bean
		// Instantiate the bean.
		BeanWrapper instanceWrapper = null;
		if (mbd.isSingleton()) {
			// 有可能在本Bean创建之前,就有其他Bean把当前Bean给创建出来(比如依赖注入过程中)
			// 单例情况下清除缓存。这里保存的是 FactoryBean 和 BeanWrapper 的映射关系。
			// factoryBeanInstanceCache是在创建其他bean的时候缓存了一下FactoryBean 。
			instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
		}
		// 如果没有缓存,则重新创建
		if (instanceWrapper == null) {
			// 1. 创建Bean实例:根据指定的bean使用对应的策略创建新的实例。如:工厂方法、构造函数自动注入,简单初始化
			instanceWrapper = createBeanInstance(beanName, mbd, args);
		}
		// 获取bean实例
		Object bean = instanceWrapper.getWrappedInstance();
		// 获取bean类型
		Class<?> beanType = instanceWrapper.getWrappedClass();
		// 将目标类型替换成实际生成的类型.纠正了上面说到类型错误(如果存在)
		if (beanType != NullBean.class) {
			mbd.resolvedTargetType = beanType;
		}

		// 2. 调用 MergedBeanDefinitionPostProcessor 后处理器,后置处理合并后的BeanDefinition
		// Allow post-processors to modify the merged bean definition.
		synchronized (mbd.postProcessingLock) {
			if (!mbd.postProcessed) {
				try {
					// 调用MergedBeanDefinitionPostProcessor#postProcessMergedBeanDefinition()后处理器的方法。
					applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
				}
				catch (Throwable ex) {
					throw new BeanCreationException(mbd.getResourceDescription(), beanName,
							"Post-processing of merged bean definition failed", ex);
				}
				mbd.postProcessed = true;
			}
		}

		// Eagerly cache singletons to be able to resolve circular references
		// even when triggered by lifecycle interfaces like BeanFactoryAware.
		// 3. 判断是否需要提早曝光:单例 & 允许循环依赖 & 当前bean已经正在创建中
		// 由于当前bean已经在创建中,本次创建必然是循环引用造成的,所以这里判断是否可以需要提前曝光
		boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
				isSingletonCurrentlyInCreation(beanName));
		if (earlySingletonExposure) {
			if (logger.isDebugEnabled()) {
				logger.debug("Eagerly caching bean '" + beanName +
						"' to allow for resolving potential circular references");
			}
			// 4. 为避免后期循环依赖,在bean初始化完成前将创建实例的ObjectFactory加入工程  -- 解决循环依赖:添加到三级缓存
			addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
		}

		// Initialize the bean instance.
		Object exposedObject = bean;
		try {
			// 5. 对bean进行属性填充,将各个属性值注入,其中如果存在依赖于其他bean的属性,则会递归初始依赖bean
			populateBean(beanName, mbd, instanceWrapper);
			// 调用初始化方法,比如 init-method
			exposedObject = initializeBean(beanName, exposedObject, mbd);
		}
		catch (Throwable ex) {
			if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) {
				throw (BeanCreationException) ex;
			}
			else {
				throw new BeanCreationException(
						mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);
			}
		}

		// 6. 进行循环依赖检查
		if (earlySingletonExposure) {
			Object earlySingletonReference = getSingleton(beanName, false);
			// earlySingletonReference只有在检测到有循环依赖的情况下才会不为空
			if (earlySingletonReference != null) {
				// 如果exposedObject没有在初始化方法中被改变,也就是没有被增强
				if (exposedObject == bean) {
					exposedObject = earlySingletonReference;
				}
				else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
					String[] dependentBeans = getDependentBeans(beanName);
					Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length);
					for (String dependentBean : dependentBeans) {
						// 检测依赖
						if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
							actualDependentBeans.add(dependentBean);
						}
					}
					// 因为bean创建后其所依赖的bean一定是已经创建了的。actualDependentBeans不为空说明当前bean创建后其依赖的bean却没有全部创建完,也就说说存在循环依赖。
					if (!actualDependentBeans.isEmpty()) {
						throw new BeanCurrentlyInCreationException(beanName,
								"Bean with name '" + beanName + "' has been injected into other beans [" +
								StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
								"] in its raw version as part of a circular reference, but has eventually been " +
								"wrapped. This means that said other beans do not use the final version of the " +
								"bean. This is often the result of over-eager type matching - consider using " +
								"'getBeanNamesForType' with the 'allowEagerInit' flag turned off, for example.");
					}
				}
			}
		}

		// Register bean as disposable.
		try {
			// 7.根据Scopse 注册bean
			registerDisposableBeanIfNecessary(beanName, bean, mbd);
		}
		catch (BeanDefinitionValidationException ex) {
			throw new BeanCreationException(
					mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex);
		}

		return exposedObject;
	}

三、populateBean - 概述

我们先整体的过一下代码,然后再详细解读每一步

AbstractAutowireCapableBeanFactory#populateBean()

	/**
	 * beanName: bean的name
	 * mbd: bean的定义信息
	 * bw: bean实例的包装类型,里面有bean的实例
	 */
	protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
		// 没有属性抛出异常
		if (bw == null) {
			if (mbd.hasPropertyValues()) {
				throw new BeanCreationException(
						mbd.getResourceDescription(), beanName, "Cannot apply property values to null instance");
			}
			else {
				// Skip property population phase for null instance.
				// 跳过属性填充阶段以获取空实例
				return;
			}
		}

		// Give any InstantiationAwareBeanPostProcessors the opportunity to modify the
		// state of the bean before properties are set. This can be used, for example,
		// to support styles of field injection.
		// 1. 属性填充判断:
		// mbd.isSynthetic()是否是整合的 && hasInstantiationAwareBeanPostProcessors()判断是否为InstantiationAwareBeanPostProcessor的类型
		// 如果是执行InstantiationAwareBeanPostProcessor.postProcessAfterInstantiation()方法
		// 给InstantiationAwareBeanPostProcessor最后一次机会在属性设置前来改变bean
		if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
			for (BeanPostProcessor bp : getBeanPostProcessors()) {
				if (bp instanceof InstantiationAwareBeanPostProcessor) {
					InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
					// 返回值为是否继续填充bean
					if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
						return;
					}
				}
			}
		}

		PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);

		int resolvedAutowireMode = mbd.getResolvedAutowireMode();
		// 2. 自动装配 :根据名称或类型自动注入
		if (resolvedAutowireMode == AUTOWIRE_BY_NAME || resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
			MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
			// Add property values based on autowire by name if applicable.
			if (resolvedAutowireMode == AUTOWIRE_BY_NAME) {
				autowireByName(beanName, mbd, bw, newPvs);
			}
			// Add property values based on autowire by type if applicable.
			if (resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
				autowireByType(beanName, mbd, bw, newPvs);
			}
			pvs = newPvs;
		}
		// 后处理器已经初始化
		boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();
		// 需要依赖检查
		boolean needsDepCheck = (mbd.getDependencyCheck() != AbstractBeanDefinition.DEPENDENCY_CHECK_NONE);

		if (hasInstAwareBpps || needsDepCheck) {
			if (pvs == null) {
				pvs = mbd.getPropertyValues();
			}
			PropertyDescriptor[] filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
			if (hasInstAwareBpps) {
				// 3. 成员变量的注入
				// 调用了InstantiationAwareBeanPostProcessor.postProcessPropertyValues()方法,来进行设值后处理
				for (BeanPostProcessor bp : getBeanPostProcessors()) {
					if (bp instanceof InstantiationAwareBeanPostProcessor) {
						InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
						// 调用设值
						pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
						if (pvs == null) {
							return;
						}
					}
				}
			}
			// 如果需要检查
			if (needsDepCheck) {
				// 依赖检查,对应 depends-on属性,3.0 已弃用
				checkDependencies(beanName, mbd, filteredPds, pvs);
			}
		}

		if (pvs != null) {
			// 4. 将属性应用到bean中
			applyPropertyValues(beanName, mbd, bw, pvs);
		}
	}

从上看下来,整个流程如下:

  1. InstantiationAwareBeanPostProcessor.postProcessAfterInstantiation()方法,可以决定程序是否继续进行属性填充。只要有一个,InstantiationAwareBeanPostProcessor返回return,都会终止属性填充的过程。
  2. 根据注入类型(name或type),提取依赖的bean,并统一存入到PropertyValues中。
  3. 应用InstantiationAwareBeanPostProcessor.postProcessPropertyValues()方法,对属性获取完毕填充前对属性的再次处理。
  4. 将所有PropertyValues中的属性填充至BeanWrapper中。

在这里方法里按照如下顺序调用了后处理器

  • InstantiationAwareBeanPostProcessor.postProcessAfterInstantiation(): 是否使用 InstantiationAwareBeanPostProcessor进行属性装配
  • InstantiationAwareBeanPostProcessor.postProcessPropertyValues :进行属性装配

四、populateBean - 详解

1. 属性填充判断

		// 1. 属性填充判断:
		// mbd.isSynthetic()是否是整合的 && hasInstantiationAwareBeanPostProcessors()判断是否为InstantiationAwareBeanPostProcessor的类型
		// 如果是执行InstantiationAwareBeanPostProcessor.postProcessAfterInstantiation()方法
		// 给InstantiationAwareBeanPostProcessor最后一次机会在属性设置前来改变bean
		if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
			for (BeanPostProcessor bp : getBeanPostProcessors()) {
				if (bp instanceof InstantiationAwareBeanPostProcessor) {
					InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
					// 返回值为是否继续填充bean
					if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
						return;
					}
				}
			}
		}

如下,这里调用了InstantiationAwareBeanPostProcessor#postProcessAfterInstantiation()方法来决定是否继续注入属性。该方法正常返回true。如果返回false 则将取消对此bean调用任何后续的InstantiationAwareBeanPostProcessor方法。

2. 自动装配

在下面这段代码中,对AUTOWIRE_BY_NAME类型和AUTOWIRE_BY_TYPE的种类进行自动装配。

// 2. 自动装配 :根据名称或类型自动注入
		if (resolvedAutowireMode == AUTOWIRE_BY_NAME || resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
			MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
			// Add property values based on autowire by name if applicable.
			if (resolvedAutowireMode == AUTOWIRE_BY_NAME) {
				autowireByName(beanName, mbd, bw, newPvs);
			}
			// Add property values based on autowire by type if applicable.
			if (resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
				autowireByType(beanName, mbd, bw, newPvs);
			}
			pvs = newPvs;
		}

这一段代码的目的是,如果bean在声明的时候指定了自动注入类型是byName或者byType,则会根据这个规则,对bean内部的排除某些特定的属性后, 进行byName或者byType的自动装配。

2.1. 根据名字自动装配 - autowireByName

AbstractAutowireCapableBeanFactory#autowireByName()

protected void autowireByName(
			String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
		// 寻找bw中需要依赖注入的属性name
		String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
		for (String propertyName : propertyNames) {
			// 检查缓存bean 中是否有当前bean
			if (containsBean(propertyName)) {
				// 递归初始化bean,会调用doGetBean 来 获取bean
				Object bean = getBean(propertyName);
				pvs.add(propertyName, bean);
				// 注册依赖,将依赖关系保存到 Map<String, Set<String>> dependentBeanMapdependentBeanMap中,key是bean,value是转化后的propertyName
				registerDependentBean(propertyName, beanName);
				if (logger.isDebugEnabled()) {
					logger.debug("Added autowiring by name from bean name '" + beanName +
							"' via property '" + propertyName + "' to bean named '" + propertyName + "'");
				}
			}
			else {
				// 找不到则不处理
				if (logger.isTraceEnabled()) {
					logger.trace("Not autowiring property '" + propertyName + "' of bean '" + beanName +
							"' by name: no matching bean found");
				}
			}
		}
	}

可以看到,byName的处理逻辑很简单,一句话概括,获取需要注入的bean然后递归调用getBean获取bean进行注入。 关于unsatisfiedNonSimpleProperties方法在后面有讲解。

2.1.1. 注册依赖bean - registerDependentBean

	// bean dependent(依赖的集合) : beanName -> 依赖该beanName 的 bean,即 key代表的bean 被value 所依赖
	private final Map<String, Set<String>> dependentBeanMap = new ConcurrentHashMap<>(64);
	// bean 被哪些bean依赖 :  beanName -> beanName 所依赖的 bean。即 key 依赖于value这些bean
	private final Map<String, Set<String>> dependenciesForBeanMap = new ConcurrentHashMap<>(64);
	
	 /**
	 * 注册依赖关系的bean
	 */
	public void registerDependentBean(String beanName, String dependentBeanName) {
		// 获取真实的beanName
		String canonicalName = canonicalName(beanName);

		// 保存依赖关系。dependentBeanMap: key 被 value 依赖
		synchronized (this.dependentBeanMap) {
			Set<String> dependentBeans =
					this.dependentBeanMap.computeIfAbsent(canonicalName, k -> new LinkedHashSet<>(8));
			if (!dependentBeans.add(dependentBeanName)) {
				return;
			}
		}
		// bean被哪些bean依赖 dependenciesForBeanMap : key 依赖于bean
		synchronized (this.dependenciesForBeanMap) {
			Set<String> dependenciesForBean =
					this.dependenciesForBeanMap.computeIfAbsent(dependentBeanName, k -> new LinkedHashSet<>(8));
			dependenciesForBean.add(canonicalName);
		}
	}

2.1.2. 排除规则 - unsatisfiedNonSimpleProperties

unsatisfiedNonSimpleProperties方法中,对Bean的属性进行了过滤,得到了需要自动装配的属性。我们来详细看看里面的内容。

	protected String[] unsatisfiedNonSimpleProperties(AbstractBeanDefinition mbd, BeanWrapper bw) {
		Set<String> result = new TreeSet<>();
		// 获取bean的property属性
		PropertyValues pvs = mbd.getPropertyValues();
		// 获取 bw 中的属性描述
		PropertyDescriptor[] pds = bw.getPropertyDescriptors();
		for (PropertyDescriptor pd : pds) {
			// if  pd属性具有set方法 && 依赖检查中没有被忽略 && 没有被配置成property属性 && 不是简单类型
			if (pd.getWriteMethod() != null && !isExcludedFromDependencyCheck(pd) && !pvs.contains(pd.getName()) &&
					!BeanUtils.isSimpleProperty(pd.getPropertyType())) {
				// 添加到需要装配的集合中
				result.add(pd.getName());
			}
		}
		// 返回需要自动装配的bean集合
		return StringUtils.toStringArray(result);
	}

可以看到过滤条件

  1. 装配属性具有set 方法: 因为后面的装配是通过set方法装配
  2. 依赖检查中没有被忽略
  3. 没有property属性,因为这里property会被单独处理,不需要在这里保存
  4. 不是简单类型,即不属于Void、void、 Enum、CharSequence、Number、Date、Temporal、URI、URL、Locale、Class 和 八大基本数据类型及其包装类型。可以看到如下代码,ClassUtils.isPrimitiveOrWrapper(type) 判断是type是否属于基本数据类型或者其包装类型。
	public static boolean isSimpleValueType(Class<?> type) {
		return (Void.class != type && void.class != type &&
				(ClassUtils.isPrimitiveOrWrapper(type) ||
				Enum.class.isAssignableFrom(type) ||
				CharSequence.class.isAssignableFrom(type) ||
				Number.class.isAssignableFrom(type) ||
				Date.class.isAssignableFrom(type) ||
				Temporal.class.isAssignableFrom(type) ||
				URI.class == type ||
				URL.class == type ||
				Locale.class == type ||
				Class.class == type));
	}

2.2. 根据类型自动装配 - autowireByType

AbstractAutowireCapableBeanFactory#autowireByType()

protected void autowireByType(
			String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
		// 获取自定义的类型转换器
		TypeConverter converter = getCustomTypeConverter();
		if (converter == null) {
			converter = bw;
		}

		Set<String> autowiredBeanNames = new LinkedHashSet<>(4);
		// 寻找 bw中需要依赖注入的属性name
		String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
		for (String propertyName : propertyNames) {
			try {
				// 获取属性描述者
				PropertyDescriptor pd = bw.getPropertyDescriptor(propertyName);
				// Don't try autowiring by type for type Object: never makes sense,
				// even if it technically is a unsatisfied, non-simple property.
				// 排除Object类型 
				if (Object.class != pd.getPropertyType()) {
					// 获取指定属性的 set 方法
					MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd);
					// Do not allow eager init for type matching in case of a prioritized post-processor.
					boolean eager = !(bw.getWrappedInstance() instanceof PriorityOrdered);
					DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager);
					// 解析指定beanName的属性所匹配的值,并把解析到的属性名存储在autowiredBeanNames中
					// 当属性存在多个封装bean时,如 @Autowired List<Bean> beans,会找到所有的匹配Bean 类型的bean并将其注入。
					// 这里的返回值是真正的需要注入的属性, autowiredBeanNames 是需要注入的属性(可能是集合)的names
					Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter);
					if (autowiredArgument != null) {
						// 添加到待注入的bean列表中
						pvs.add(propertyName, autowiredArgument);
					}
					// 注册依赖
					for (String autowiredBeanName : autowiredBeanNames) {
						// 注册依赖关系。操作 dependentBeanMap 和  dependenciesForBeanMap 集合
						registerDependentBean(autowiredBeanName, beanName);
						if (logger.isDebugEnabled()) {
							logger.debug("Autowiring by type from bean name '" + beanName + "' via property '" +
									propertyName + "' to bean named '" + autowiredBeanName + "'");
						}
					}
					autowiredBeanNames.clear();
				}
			}
			catch (BeansException ex) {
				throw new UnsatisfiedDependencyException(mbd.getResourceDescription(), beanName, propertyName, ex);
			}
		}
	}

这里面的主要的逻辑被封装到了resolveDependency() 方法中,我们下面来看看DefaultListableBeanFactory#resolveDependency方法的具体实现。目前我所知另外调用地方:

AutowiredAnnotationBeanPostProcessor中注入处理@Autowired注入的时候也调用了该方法
ConstructorResolver#autowireConstructorresolveAutowiredArgument( methodParam, beanName, autowiredBeanNames, converter, fallback);时也调用了该方法。

2.2.1 解析依赖关系 - resolveDependency

AutowireCapableBeanFactory#resolveDependency()

	@Nullable
	Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
			@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException;

}

DefaultListableBeanFactory#resolveDependency()

	@Override
	@Nullable
	public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
			@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {

		descriptor.initParameterNameDiscovery(getParameterNameDiscoverer());
		// 针对不同类型的不同处理
		if (Optional.class == descriptor.getDependencyType()) {
			return createOptionalDependency(descriptor, requestingBeanName);
		}
		else if (ObjectFactory.class == descriptor.getDependencyType() ||
				ObjectProvider.class == descriptor.getDependencyType()) {
			return new DependencyObjectProvider(descriptor, requestingBeanName);
		}
		else if (javaxInjectProviderClass == descriptor.getDependencyType()) {
			return new Jsr330ProviderFactory().createDependencyProvider(descriptor, requestingBeanName);
		}
		else {
			// 处理bean是否懒加载,如果懒加载,创建一个代理对象注入bean
			Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
					descriptor, requestingBeanName);
			if (result == null) {
				// 针对一般类型的通用
				result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
			}
			return result;
		}
	}

上面的逻辑比较清晰,对一些特殊的类型进行特殊处理,一般的通用处理都会调用 doResolveDependency()方法。这里我们不去关注特殊类型的处理,下面再来看看
DefaultListableBeanFactory#doResolveDependency()方法,代码如下。

2.2.1.1 DefaultListableBeanFactory#doResolveDependency()

DefaultListableBeanFactory#doResolveDependency()

@Nullable
	public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
			@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
		// 只有ShortcutDependencyDescriptor实现了resolveShortcut方法,返回了非空值。目前版本代码只在AutowiredFieldElement、
		// AutowiredMethodElement类中使用到,也即是说,只有解析@Autowired、@Value注解的元素才会用到,目的是为了将解析结果缓存起来,避免重复解析
		InjectionPoint previousInjectionPoint = ConstructorResolver.setCurrentInjectionPoint(descriptor);
		try {
			// 尝试获取缓存
			Object shortcut = descriptor.resolveShortcut(this);
			if (shortcut != null) {
				// 存在缓存直接返回
				return shortcut;
			}

			// 获取 依赖的类型
			Class<?> type = descriptor.getDependencyType();
			// 取值@Value注解中的value属性中的值,这里取出的值是未经修改的值,即带有 ${} 标签的值。如果descriptor未被@Value标注,则返回null
			Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor);
			if (value != null) {
				// 到这里说明属性被@Value注解修饰了,这里是解析@Value注解的逻辑
				// 如果value不为null,
				if (value instanceof String) {
					// 处理占位符如${},做占位符的替换(不解析SP EL表达式)
					String strVal = resolveEmbeddedValue((String) value);
					BeanDefinition bd = (beanName != null && containsBean(beanName) ? getMergedBeanDefinition(beanName) : null);
					// 解析SP EL(如#{})
					value = evaluateBeanDefinitionString(strVal, bd);
				}
				TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
				// 类型转换,把解析出来的结果转成type类型
				return (descriptor.getField() != null ?
						converter.convertIfNecessary(value, type, descriptor.getField()) :
						converter.convertIfNecessary(value, type, descriptor.getMethodParameter()));
			}

			// 对集合类型进行处理,包括,Array、Collection、Map。后面详解
			Object multipleBeans = resolveMultipleBeans(descriptor, beanName, autowiredBeanNames, typeConverter);
			if (multipleBeans != null) {
				// 如果解析出来集合类型,则直接返回
				return multipleBeans;
			}

			// 调用查找所有类型为type的实例,存放在matchingBeans<beanName, bean> (在resolveMultipleBeans方法中也是核心也是调用该方法)。下面详解
			Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);
			if (matchingBeans.isEmpty()) {
				if (isRequired(descriptor)) {
					// 如果没有找到,并且bean并标注为required=true, 则抛出NoSuchBeanDefinitionException异常
					raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
				}
				return null;
			}

			String autowiredBeanName;
			Object instanceCandidate;

			// 如果找到了不止一个匹配的bean,Spring 按照一定规则进行挑选
			if (matchingBeans.size() > 1) {
				// 按以下顺序,找到符合条件的就直接返回
				// 1. 挑选出被标识为primary的bean
				// 2. 挑选标识了@Priority,且先级级最高的bean。可以不标识,一旦标识,不允许同一优先级的存在
				// 3. fallback,依赖的名称与matchingBeans中任意一Key匹配
				autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor);
				if (autowiredBeanName == null) {
					if (isRequired(descriptor) || !indicatesMultipleBeans(type)) {
						// 非集合类,找到了多个符合条件的Bean,抛出异常
						return descriptor.resolveNotUnique(type, matchingBeans);
					}
					else {
						// In case of an optional Collection/Map, silently ignore a non-unique case:
						// possibly it was meant to be an empty collection of multiple regular beans
						// (before 4.3 in particular when we didn't even look for collection beans).
						return null;
					}
				}
				instanceCandidate = matchingBeans.get(autowiredBeanName);
			}
			else {
				// We have exactly one match.
				// 如果只找到了唯一匹配的元素,则直接使用
				Map.Entry<String, Object> entry = matchingBeans.entrySet().iterator().next();
				autowiredBeanName = entry.getKey();
				instanceCandidate = entry.getValue();
			}

			if (autowiredBeanNames != null) {
				// 将待装配的Bean名称放入autowiredBeanNames集合里
				autowiredBeanNames.add(autowiredBeanName);
			}
			if (instanceCandidate instanceof Class) {
				// 这里又去调用 getBean 方法去获取bean
				instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
			}
			Object result = instanceCandidate;
			if (result instanceof NullBean) {
				if (isRequired(descriptor)) {
					// 如果 result 是 NullBean类型,且 required = true,则抛出异常
					raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
				}
				result = null;
			}
			// 类型校验,确保类型与解析出来的Bean实例能够匹配
			if (!ClassUtils.isAssignableValue(type, result)) {
				throw new BeanNotOfRequiredTypeException(autowiredBeanName, type, instanceCandidate.getClass());
			}
			return result;
		}
		finally {
			ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint);
		}
	}

1 DefaultListableBeanFactory#determineAutowireCandidate()

doResolveDependency() >>> DefaultListableBeanFactory#determineAutowireCandidate()

@Nullable
	protected String determineAutowireCandidate(Map<String, Object> candidates, DependencyDescriptor descriptor) {
		// 获取类型
		Class<?> requiredType = descriptor.getDependencyType();
		// 获取primary的候选beanName
		String primaryCandidate = determinePrimaryCandidate(candidates, requiredType);
		if (primaryCandidate != null) {
			return primaryCandidate;
		}
		// 获取Priority最高(优先级最高的)beanName
		String priorityCandidate = determineHighestPriorityCandidate(candidates, requiredType);
		if (priorityCandidate != null) {
			return priorityCandidate;
		}
		// Fallback
		// 通过回调返回。
		for (Map.Entry<String, Object> entry : candidates.entrySet()) {
			String candidateName = entry.getKey();
			Object beanInstance = entry.getValue();
			if ((beanInstance != null && this.resolvableDependencies.containsValue(beanInstance)) ||
					matchesBeanName(candidateName, descriptor.getDependencyName())) {
				return candidateName;
			}
		}
		return null;
	}
2 DefaultListableBeanFactory#resolveMultipleBeans()

这个方法是用来处理 数组、Collection、Map 类型的注入。具体实现如下:

@Nullable
	private Object resolveMultipleBeans(DependencyDescriptor descriptor, @Nullable String beanName,
			@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) {

		Class<?> type = descriptor.getDependencyType();
		// 如果是 数组类型
		if (type.isArray()) {
			// 确定最终类型
			Class<?> componentType = type.getComponentType();
			ResolvableType resolvableType = descriptor.getResolvableType();
			Class<?> resolvedArrayType = resolvableType.resolve();
			if (resolvedArrayType != null && resolvedArrayType != type) {
				type = resolvedArrayType;
				componentType = resolvableType.getComponentType().resolve();
			}
			if (componentType == null) {
				return null;
			}
			// 根据属性类型找到beanFactory中所有类型的匹配bean
			// 返回值构成:key = 匹配的beanName, value = beanName对应的实例化bean,通过getBean(beanName)获取。
			Map<String, Object> matchingBeans = findAutowireCandidates(beanName, componentType,
					new MultiElementDescriptor(descriptor));
			// 如果是未找到匹配的bean,则返回null,
			if (matchingBeans.isEmpty()) {
				return null;
			}
			// 保存所有适配的 beanName
			if (autowiredBeanNames != null) {
				autowiredBeanNames.addAll(matchingBeans.keySet());
			}
			// 进行类型转换,将bean转换为对应的type类型。
			TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
			Object result = converter.convertIfNecessary(matchingBeans.values(), type);
			if (getDependencyComparator() != null && result instanceof Object[]) {
				// 排序
				Arrays.sort((Object[]) result, adaptDependencyComparator(matchingBeans));
			}
			return result;
		}
		// 对Collection类型的处理,逻辑基本同上,这里不再赘述
		else if (Collection.class.isAssignableFrom(type) && type.isInterface()) {
			Class<?> elementType = descriptor.getResolvableType().asCollection().resolveGeneric();
			if (elementType == null) {
				return null;
			}
			Map<String, Object> matchingBeans = findAutowireCandidates(beanName, elementType,
					new MultiElementDescriptor(descriptor));
			if (matchingBeans.isEmpty()) {
				return null;
			}
			if (autowiredBeanNames != null) {
				autowiredBeanNames.addAll(matchingBeans.keySet());
			}
			TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
			Object result = converter.convertIfNecessary(matchingBeans.values(), type);
			if (getDependencyComparator() != null && result instanceof List) {
				((List<?>) result).sort(adaptDependencyComparator(matchingBeans));
			}
			return result;
		}
		// 对map类型的处理,逻辑类似上面
		else if (Map.class == type) {
			ResolvableType mapType = descriptor.getResolvableType().asMap();
			Class<?> keyType = mapType.resolveGeneric(0);
			if (String.class != keyType) {
				return null;
			}
			Class<?> valueType = mapType.resolveGeneric(1);
			if (valueType == null) {
				return null;
			}
			Map<String, Object> matchingBeans = findAutowireCandidates(beanName, valueType,
					new MultiElementDescriptor(descriptor));
			if (matchingBeans.isEmpty()) {
				return null;
			}
			if (autowiredBeanNames != null) {
				autowiredBeanNames.addAll(matchingBeans.keySet());
			}
			return matchingBeans;
		}
		else {
			return null;
		}
	}

可以看到的是,如果是集合类型,内部的核心方法也是findAutowireCandidates方法。所以下面还是来看DefaultListableBeanFactory#findAutowireCandidates()方法。

3 DefaultListableBeanFactory#findAutowireCandidates()

DefaultListableBeanFactory#findAutowireCandidates()

protected Map<String, Object> findAutowireCandidates(
			@Nullable String beanName, Class<?> requiredType, DependencyDescriptor descriptor) {
		// 根据 Class 类型,找到对应的候选beanName,
		String[] candidateNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors(
				this, requiredType, true, descriptor.isEager());
		Map<String, Object> result = new LinkedHashMap<>(candidateNames.length);
		// 这里我们一般不会涉及。如果注入的是 resolvableDependencies key类型,则会装配成value类型
		for (Class<?> autowiringType : this.resolvableDependencies.keySet()) {
			if (autowiringType.isAssignableFrom(requiredType)) {
				Object autowiringValue = this.resolvableDependencies.get(autowiringType);
				autowiringValue = AutowireUtils.resolveAutowiringValue(autowiringValue, requiredType);
				if (requiredType.isInstance(autowiringValue)) {
					result.put(ObjectUtils.identityToString(autowiringValue), autowiringValue);
					break;
				}
			}
		}
		// 遍历候选的beanName
		for (String candidate : candidateNames) {
			// 不是自引用 && 允许被注入(autowire-candidate 标签指定)
			if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, descriptor)) {
				// 将结果添加到result中
				addCandidateEntry(result, candidate, descriptor, requiredType);
			}
		}
		// 如果目前找到的匹配的bean集合为空 && Array || Collection || Map 。即是否表示多个bean的集合类型
		if (result.isEmpty() && !indicatesMultipleBeans(requiredType)) {
			// Consider fallback matches if the first pass failed to find anything...
			DependencyDescriptor fallbackDescriptor = descriptor.forFallbackMatch();
			for (String candidate : candidateNames) {
				// 非自引用 && 允许被注入 && (非集合类 || 解析 @Qualifier 注解或者 javax.inject.Qualifier类成功)
				// 这里开始分析解析的属性是否被 @Qualifier 注解或者 javax.inject.Qualifier类 限定符限定了
				if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, fallbackDescriptor)) {
					addCandidateEntry(result, candidate, descriptor, requiredType);
				}
			}
			// 如果还没找到
			if (result.isEmpty()) {
				// Consider self references as a final pass...
				// but in the case of a dependency collection, not the very same bean itself.
				for (String candidate : candidateNames) {
					// 将自我引用视为最后一步。判断是不是自己引用自己
					if (isSelfReference(beanName, candidate) &&
							(!(descriptor instanceof MultiElementDescriptor) || !beanName.equals(candidate)) &&
							isAutowireCandidate(candidate, fallbackDescriptor)) {
						addCandidateEntry(result, candidate, descriptor, requiredType);
					}
				}
			}
		}
		return result;
	}

findAutowireCandidates() >>> DefaultListableBeanFactory#addCandidateEntry()

	private void addCandidateEntry(Map<String, Object> candidates, String candidateName,
			DependencyDescriptor descriptor, Class<?> requiredType) {
		// 根据类型判断,如果是MultiElementDescriptor,获取后保存到候选列表中
		if (descriptor instanceof MultiElementDescriptor || containsSingleton(candidateName)) {
			Object beanInstance = descriptor.resolveCandidate(candidateName, requiredType, this);
			candidates.put(candidateName, (beanInstance instanceof NullBean ? null : beanInstance));
		}
		else {
			// getType 调用了beanFacotory.getBean()方法
			candidates.put(candidateName, getType(candidateName));
		}
	}

这里提两点:

  1. 这里需要注意resolvableDependencies。其在 DefaultListableBeanFactory#resolvableDependencies()定义如下,其作用是,当一些其他的类需要装配key类型的bean时,实际装配的类型是key对应的value 类型。
	/** Map from dependency type to corresponding autowired value. */
	// key 是映射值,value是实际注入值
	private final Map<Class<?>, Object> resolvableDependencies = new ConcurrentHashMap<>(16);

在 Spring默认的代码中,仅仅有八个元素保存到其中,如下:
在这里插入图片描述
如下, DemoA2021 默认装配的BeanFactory类型是DefaultListableBeanFactory类型:

@Data
@Data
public class DemoA2021 {
    private DemoB2021 demob;
    private DemoC2021 democ;
    private List<Demo> demos;
    private BeanFactory beanFactory;
}

在这里插入图片描述
从上面的代码可以看到,Spring寻找合适的bean的要求是一再放宽的 : 非自引用 -> 被 Qualifier 限定符修饰的bean -> 自引用。

  1. autowire-candidate :xml中在注入bean的时候有该属性。@Bean也有对应的属性。其作用是用来标记当前bean是否会被作为注入的候选bean。默认值true:表示其他bean可以把当前bean作为属性注入。如果false:表示其他bean选在注入属性 bean时将忽略当前bean。这一点在上面的代码中也有体现

3. 成员变量的注入

				// 3. 成员变量的注入
				// 调用了InstantiationAwareBeanPostProcessor.postProcessPropertyValues()方法,来进行设值后处理
				for (BeanPostProcessor bp : getBeanPostProcessors()) {
					if (bp instanceof InstantiationAwareBeanPostProcessor) {
						InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
						// 调用设值
						pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
						if (pvs == null) {
							return;
						}
					}
				}

这里通过InstantiationAwareBeanPostProcessor的后处理器的postProcessPropertyValues方法完成了属性的注入。Spring 默认是通过 AutowiredAnnotationBeanPostProcessor.postProcessPropertyValues()的实现来完成的属性的注入。
AutowiredAnnotationBeanPostProcessor中完成了@Autowired@Value 注解的自动注入功能。
大概逻辑是,获取被@Autowired修饰的属性或者方法,如果是属性,则通过getBean()获取bean并注入,如果是方法,则获取方法参数后,invoke()方法(调用该方法,因为我们一般写的都是set方法,给属性注入赋值)。

4. applyPropertyValues

AbstractAutowireCapableBeanFactory#applyPropertyValues()

上面只是将属性保存了起来,并未真正设置到bean中,这里设置到bean中

	protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {
		if (pvs.isEmpty()) {
			return;
		}

		if (System.getSecurityManager() != null && bw instanceof BeanWrapperImpl) {
			((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext());
		}

		MutablePropertyValues mpvs = null;
		List<PropertyValue> original;
		// 如果pvs 是 MutablePropertyValues 类型的封装
		if (pvs instanceof MutablePropertyValues) {
			mpvs = (MutablePropertyValues) pvs;
			// 如果 mpv 中的值类型已经转换完毕,则可以直接设置到BeanWrapper中
			if (mpvs.isConverted()) {
				// Shortcut: use the pre-converted values as-is.
				try {
					bw.setPropertyValues(mpvs);
					return;
				}
				catch (BeansException ex) {
					throw new BeanCreationException(
							mbd.getResourceDescription(), beanName, "Error setting property values", ex);
				}
			}
			// 保存原始值,等待类型转换
			original = mpvs.getPropertyValueList();
		}
		else {
			// 保存原始值,等待类型转换
			original = Arrays.asList(pvs.getPropertyValues());
		}
		// 获取类型转换器
		TypeConverter converter = getCustomTypeConverter();
		if (converter == null) {
			converter = bw;
		}
		BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter);

		// Create a deep copy, resolving any references for values.
		// 准备进行深拷贝
		List<PropertyValue> deepCopy = new ArrayList<>(original.size());
		boolean resolveNecessary = false;
		// 遍历属性,将属性转换为对应类的对应属性类型
		for (PropertyValue pv : original) {
			// 如果已经转换之后直接保存
			if (pv.isConverted()) {
				deepCopy.add(pv);
			}
			else {
				// 进行类型转换
				String propertyName = pv.getName();
				Object originalValue = pv.getValue();
				Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue);
				Object convertedValue = resolvedValue;
				boolean convertible = bw.isWritableProperty(propertyName) &&
						!PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName);
				if (convertible) {
					convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter);
				}
				// Possibly store converted value in merged bean definition,
				// in order to avoid re-conversion for every created bean instance.
				if (resolvedValue == originalValue) {
					if (convertible) {
						pv.setConvertedValue(convertedValue);
					}
					deepCopy.add(pv);
				}
				else if (convertible && originalValue instanceof TypedStringValue &&
						!((TypedStringValue) originalValue).isDynamic() &&
						!(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) {
					pv.setConvertedValue(convertedValue);
					deepCopy.add(pv);
				}
				else {
					resolveNecessary = true;
					deepCopy.add(new PropertyValue(pv, convertedValue));
				}
			}
		}
		if (mpvs != null && !resolveNecessary) {
			mpvs.setConverted();
		}

		// Set our (possibly massaged) deep copy.
		try {
			bw.setPropertyValues(new MutablePropertyValues(deepCopy));
		}
		catch (BeansException ex) {
			throw new BeanCreationException(
					mbd.getResourceDescription(), beanName, "Error setting property values", ex);
		}
	}

五、关于自动装配

名称定义
AUTOWIRE_DEFAULT默认类型,和 AUTOWIRE_NO 相同。需要自己通过 标签或者 ref 属性来指定需要注入的bean类型
AUTOWIRE_NO和 AUTOWIRE_DEFAULT 相同
AUTOWIRE_BY_NAME按照bean名称注入
AUTOWIRE_BY_TYPE按照bean类型注入
AUTOWIRE_AUTODETECT已过时

1、创建Demo2022:com.wts.DemoA2022

public class DemoA2022 {
	private DemoB2022 demob;

	public DemoB2022 getDemob() {
		return demob;
	}

	public void setDemob(DemoB2022 demob) {
		this.demob = demob;
	}

	public DemoA2022() {
	}

	public DemoA2022(DemoB2022 demob) {
		this.demob = demob;
	}
}

2、创建DemoB2022:com.wts.DemoB2022

public class DemoB2022 {

	private DemoC2022 demoC2022;

	public DemoB2022() {
	}

	public DemoB2022(DemoC2022 demoC2022) {
		this.demoC2022 = demoC2022;
	}

	public DemoC2022 getDemoC2022() {
		return demoC2022;
	}

	public void setDemoC2022(DemoC2022 demoC2022) {
		this.demoC2022 = demoC2022;
	}
}

3、创建DemoC2022:com.wts.DemoC2022

public class DemoC2022 {
}
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	   xmlns:context="http://www.springframework.org/schema/context"
	   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	   xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd">
		
	<!--因为 demoA2022 指定了 autowire = byType。所以其内部属性(需要有set方法) 会被按照类型检测自动装配-->
	<bean id="demoA2022" name="demoA2022" class="com.wts.DemoA2022" autowire="byType"/>
	<!--demoB2022没有指定 autowire。默认是 no,也是 default。就需要自己通过  <property ref> 来指定对应的bean进行注入-->
	<bean id="demoB2022" name="demoB20222" class="com.wts.DemoB2022">
		<property name="demoC2022" ref="demoC2022"/>
	</bean>

	<bean id="demoC2022" name="demoC2022" class="com.wts.DemoC2022"/>
</beans>

装配方式可以通过@Bean(autowire = Autowire.BY_NAME)来指定注入方式。也可以通过xml配置中的 < bean … autowire=“byName”> 来指定,默认是 Autowire.NOautowire指的是当前bean内部引用的属性是以什么方式注入。不过需要注意的是,这个属性已经过时了,Spring并不推荐继续使用。

  • AUTOWIRE_DEFAULT & AUTOWIRE_NO :没有特殊指定不会处理bean。如果通过 < property> 标签指定。则会在AbstractAutowireCapableBeanFactory#populateBean()方法中完成了解析。
  • AUTOWIRE_AUTODETECT :在AbstractAutowireCapableBeanFactory#createBeanInstance()中完成了解析。
  • AUTOWIRE_BY_TYPE & AUTOWIRE_BY_NAME :在AbstractAutowireCapableBeanFactory#populateBean()方法中完成了解析。

六、总结

populateBean 在bean创建结束之后,完成了对 bean属性的注入。根据byName、byType 的不同类型注入有不同的解析方式。

以上:内容部分参考
《Spring源码深度解析》
如有侵扰,联系删除。 内容仅用于自我记录学习使用。如有错误,欢迎指正

最后

以上就是沉默星月为你收集整理的Spring源码深度解析:十、bean的属性注入④ - populateBean一、前言二、属性填充入口- populateBean三、populateBean - 概述四、populateBean - 详解五、关于自动装配六、总结的全部内容,希望文章能够帮你解决Spring源码深度解析:十、bean的属性注入④ - populateBean一、前言二、属性填充入口- populateBean三、populateBean - 概述四、populateBean - 详解五、关于自动装配六、总结所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(37)

评论列表共有 0 条评论

立即
投稿
返回
顶部