我是靠谱客的博主 聪慧钢笔,最近开发中收集的这篇文章主要介绍在强化学习rl中对于state value function和state action value function的理解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

在强化学习rl中对于state value function和state action value function的理解

在rl中,经常会提及两个基础的概念:
state (V) and action(Q)
或者也可以按照所刻画的内容称为:
V(s), Q(s, a)
在这里进行一定的区分和理解:

  1. state value function:
    英文解释可以理解为:
    It is the expected return (cumulative reward)starting from the state s following policy, π.
    在这里插入图片描述
    我们可以将带有折扣因子的gamma的求和项写成累计g:
    γ is the discount factor that determines how far future rewards are taken into account in the return
    在这里插入图片描述
    这样便是v(s)的结果表示值

  2. action value function:
    The expected return(cumulative reward) starts from state s, following policy π, taking action a.
    在这里插入图片描述
    可以看到,其中最不同的一点便是,在q function中,不仅是基于当前状态,并且还要基于某一个采取的action进行未来可能回报value的衡量
    同理 将求和项可以表示为:
    在这里插入图片描述

  3. 这时候我们可以考虑一下q function与v function之间是否存在某种关系?
    我们其实可以分两种方式:
    a.用v表示q:
    在这里插入图片描述
    P 是一个 state-transition-matrix(状态转移矩阵)输出probability of reaching the next state s’ 从 state s
    R is the immediate reward, and V is the state value of the next state s’

b.用q表示v:

在这里插入图片描述
value function 是总计的统计值:total sum of probability of choosing action or policy 乘以 the action-value of taking each action

最后可以看一下这个图片从而更好的理解两者之间的关系:在这里插入图片描述
当然也有一些其他的理解,不过都比较准确:
在这里插入图片描述
在应用advantage function方面,这个工作便是例子:
Dueling Network Architectures for Deep Reinforcement Learning
另外一种理解:
在这里插入图片描述
基本上便是一致的表述,即为q function更加突出对action的刻画,也正是因为这个原因,他更佳适合于action space很大或者state action pair很难收集的情况!

respect!

最后

以上就是聪慧钢笔为你收集整理的在强化学习rl中对于state value function和state action value function的理解的全部内容,希望文章能够帮你解决在强化学习rl中对于state value function和state action value function的理解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部