概述
简述
遗传算法(GA)是一种模拟生物进化自然选择过程的非确定性搜索方法,源于达尔文的进化论和孟德尔的遗传定律,由美国 Michigan 大学的 Holland教授在 20 世纪 70 年代首先提出。生物理论指出, 生物个体的各种生命表征是由许多基因共同决定的。同一种群的不同生物个体通常拥有不同的基因,因此对外在环境的适应能力也是不同的。 在自然选择的作用下,一部分环境适应能力较差的个体会死亡被淘汰,而环境适应能力较强的个体则更多地存活下来并繁衍后代, 因此比较适应环境的基因会有较大的概率流传到下一代。 一般情况下子代的平均适应力普遍强于父代。 在基因从父代传递到子代的过程中,一部分基因会因为变异而在子代中产生新的基因,这种变异是随机的,有可能增强子代个体的环境适应力,也有可能会降低子代个体的适应力。
遗传算法正是仿照上述理论,将一个问题的解空间编码,每一个编码代表一个个体,建立一个包含潜在的解的群体作为种群,在环境作用下通过选择(selection)、交叉(crossover)和变异(mutation)一代代繁衍,由于子代的环境适应力一般优于父代,因此算法最终能够得到问题的较优解。其中,编码中的每一位代表一个基因,环境作用由适应度函数模拟,适应度函数是判断某个解的优劣程度的函数,通常是目标函数本身或其修改形式。选择又称为选择算子,是指参照适应值函数,按照预先选定的策略随机从父代中挑选一些个体生存下来,剩下的个体则被淘汰。交叉是指仿照自然界基因传递的过程交配,对存活
最后
以上就是畅快铃铛为你收集整理的遗传算法学习笔记(一):常用的选择策略简述2.选择策略参考资料的全部内容,希望文章能够帮你解决遗传算法学习笔记(一):常用的选择策略简述2.选择策略参考资料所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复