我是靠谱客的博主 从容御姐,最近开发中收集的这篇文章主要介绍六、受限玻尔兹曼机(RBM),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

受限玻尔兹曼机(RBM

1、玻尔兹曼分布

         玻尔兹曼分布是统计物理中的一种概率分布,描述系统处于某种状态的概率

       

 

2、网络结构

         可见单元-输入数据

         隐藏单元-计算得到的结果

         二部图-图的节点集合被划分成两个不相交的子集,这两个子集内的节点之间没有边连接,子集之间的节点之间有边连接

        

         可见单元和隐藏单元的值服从玻尔兹曼分布

 

         能量定义为

        

         归一化因子为

        

 

3、实际例子

 

4、计算隐藏单元的条件概率

         实际使用时,给定可见变量的值,根据模型参数可以得到隐藏变量的条件概率密度函数

         根据条件概率的计算公式

        

         将p(v,h)的定义带入上式

        

5、计算单个隐藏单元的值

         隐含节点之间没有连接,因此这些随机变量是相互独立的

        

         已知可见变量时某一隐含变量的值为1的概率

        

6、用于特征提取

         可见单元作为输入数据,隐藏单元作为特征向量

         计算隐藏层神经元的激励能量

        

         计算该隐藏单元的条件概率值,即状态为1的概率

        

         以Pi的概率将隐藏层神经元的状态值设置为1,以1-Pi的概率值将其设置为0

 

7、训练算法

         Contrastive Divergence

         获取一个训练样本,根据该样本设置网络的可见单元

         对于隐藏单元,计算它的激励能量

        

         计算概率值

        

以Pi的概率将隐藏层神经元的状态值设置为1,以1-Pi的概率值将其设置为0

为每一条边计算如下值

        

         用类似的方法重构每个可见单元,计算它的激励能量,并更新它的状态

        再次更新隐藏单元状态,并对每条边计算   

         更新每条边的权重

        

 

8、深度波尔茨曼机

         Deep Boltzmann Machine

         可以将多个受限玻尔兹曼机层叠加起来使用

         通过多层的受限玻尔兹曼机,可以完成数据在不同层次上的特征提取和抽象

         训练时,逐层训练

最后

以上就是从容御姐为你收集整理的六、受限玻尔兹曼机(RBM)的全部内容,希望文章能够帮你解决六、受限玻尔兹曼机(RBM)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部