概述
在学习支持向量机的过程中,我们知道其损失函数为合页损失函数。至于为什么叫这个名字,李航老师的《统计学习方法》上是这么说的:由于函数形状像一个合页,故命合页损失函数。下图为合页损失函数的图像(取自《统计学习方法》):
之前对损失函数的意义一直不是很懂。今天,在看了吴恩达老师的《机器学习》相关视频后,又读了《统计学习方法》的相关内容。对合页损失函数有了自己的理解:
横轴表示函数间隔,我们从两个方面来理解函数间隔:
1)正负
当样本被正确分类时,y(wx+b)>0;当样本被错误分类时,y(wx+b)<0。
2)大小
y(wx+b)的绝对值代表样本距离决策边界的远近程度。y(wx+b)的绝对值越大,表示样本距离决策边界越远。
因此,我们可以知道:
当y(wx+b)>0时,y(wx+b)的绝对值越大表示决策边界对样本的区分度越好
当y(wx+b)<0时,y(wx+b)的绝对值越大表示决策边界对样本的区分度越差
从图中我们可以看到,
1)0-1损失
当样本被正确分类时,损失为0;当样本被错误分类时,损失为1。
2)感知机损失函数
当样本被正确分类时,损失为0;当样本被错误分类时,损失为-y(wx+b)。
3)合页损失函数
当样本被正确分类且函数间隔大于1时,合页损失才是0,否则损失是1-y(wx+b)。
相比之下,合页损失函数不仅要正确分类,而且确信度足够高时损失才是0。也就是说,合页损失函数对学习有更高的要求。
最后
以上就是谨慎凉面为你收集整理的合页损失函数的理解的全部内容,希望文章能够帮你解决合页损失函数的理解所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复