我是靠谱客的博主 纯情朋友,最近开发中收集的这篇文章主要介绍torch.triu() - torch.triu_() - v1.5.0 torch.triu() - torch.triu_() - v1.5.0 ,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

torch.triu() - torch.triu_() - v1.5.0

  • torch.triu (Python function, in torch)
  • torch.Tensor.triu (Python method, in torch.Tensor)
  • torch.Tensor.triu_ (Python method, in torch.Tensor)

torch.Tensor
https://pytorch.org/docs/stable/tensors.html

triu(k=0) -> Tensor
See torch.triu()

triu_(k=0) -> Tensor
In-place version of triu()

torch
https://pytorch.org/docs/stable/torch.html

torch.triu(input, diagonal=0, out=None) -> Tensor
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
返回一个张量,包含输入矩阵 (2D 张量) 的上三角部分,其余部分被设为 0。上三角部分为矩阵指定对角线 diagonal 之上的元素。

The upper triangular part of the matrix is defined as the elements on and above the diagonal.
上三角部分为矩阵指定对角线 diagonal 之上的元素。

The argument diagonal controls which diagonal to consider. If diagonal = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices { ( i , i ) } {(i,i)} {(i,i)} for i ∈ [ 0 , min ⁡ { d 1 , d 2 } − 1 ] i in [0, min{d_{1}, d_{2}} - 1] i[0,min{d1,d2}1] where d 1 d_{1} d1, d 2 d_{2} d2 are the dimensions of the matrix.
参数 diagonal 控制要考虑的对角线。如果 diagonal = 0,则保留主对角线上和上方的所有元素。正值排除主对角线和对角线上方的部分元素,同样负值包括主对角线和主对角线下方的部分元素。主对角线是 { ( i , i ) } {(i,i)} {(i,i)} for i ∈ [ 0 , min ⁡ { d 1 , d 2 } − 1 ] i in [0, min{d_{1}, d_{2}} - 1] i[0,min{d1,d2}1] 的索引集,其中 d 1 d_{1} d1, d 2 d_{2} d2 是矩阵的维数。

参数 k 控制对角线:

  • k = 0,保留主对角线上和主对角线上方的所有元素
  • k > 0,主对角线之上的相应元素
  • k < 0,主对角线之下的相应元素

1. Parameters

input (Tensor) – the input tensor.

diagonal (int, optional) – the diagonal to consider. (指定对角线。)

out (Tensor, optional) – the output tensor.

2. Example

(pt-1.4_py-3.6) yongqiang@yongqiang:~$ python
Python 3.6.10 |Anaconda, Inc.| (default, May  8 2020, 02:54:21)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>>
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.5144,  0.5091, -0.3698,  0.3694],
        [-1.1344, -0.2793,  1.6651, -1.3632],
        [-0.3397, -0.1468, -0.0300, -1.1186],
        [-2.1449,  1.3087, -0.1409,  2.4678]])
>>>
>>> torch.triu(a)
tensor([[ 0.5144,  0.5091, -0.3698,  0.3694],
        [ 0.0000, -0.2793,  1.6651, -1.3632],
        [ 0.0000,  0.0000, -0.0300, -1.1186],
        [ 0.0000,  0.0000,  0.0000,  2.4678]])
>>>
>>> torch.triu(a, diagonal=1)
tensor([[ 0.0000,  0.5091, -0.3698,  0.3694],
        [ 0.0000,  0.0000,  1.6651, -1.3632],
        [ 0.0000,  0.0000,  0.0000, -1.1186],
        [ 0.0000,  0.0000,  0.0000,  0.0000]])
>>>
>>> torch.triu(a, diagonal=-1)
tensor([[ 0.5144,  0.5091, -0.3698,  0.3694],
        [-1.1344, -0.2793,  1.6651, -1.3632],
        [ 0.0000, -0.1468, -0.0300, -1.1186],
        [ 0.0000,  0.0000, -0.1409,  2.4678]])
>>>
>>> torch.triu(a, diagonal=-2)
tensor([[ 0.5144,  0.5091, -0.3698,  0.3694],
        [-1.1344, -0.2793,  1.6651, -1.3632],
        [-0.3397, -0.1468, -0.0300, -1.1186],
        [ 0.0000,  1.3087, -0.1409,  2.4678]])
>>>
>>> torch.triu(a, diagonal=-3)
tensor([[ 0.5144,  0.5091, -0.3698,  0.3694],
        [-1.1344, -0.2793,  1.6651, -1.3632],
        [-0.3397, -0.1468, -0.0300, -1.1186],
        [-2.1449,  1.3087, -0.1409,  2.4678]])
>>>
>>> exit()
(pt-1.4_py-3.6) yongqiang@yongqiang:~$
(pt-1.4_py-3.6) yongqiang@yongqiang:~$ python
Python 3.6.10 |Anaconda, Inc.| (default, May  8 2020, 02:54:21)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>>
>>> b = torch.randn(4, 6)
>>> b
tensor([[-1.3014, -1.2629,  0.7176,  1.2692, -0.1408, -0.9948],
        [ 1.4856, -1.1522,  0.8107,  0.2437,  0.0965, -0.9363],
        [-0.2229, -0.6405, -0.3730,  1.5058,  0.6841,  1.7821],
        [ 0.1128, -0.2907,  0.1218,  1.1333, -0.2058, -0.0554]])
>>>
>>> torch.triu(b, diagonal=1)
tensor([[ 0.0000, -1.2629,  0.7176,  1.2692, -0.1408, -0.9948],
        [ 0.0000,  0.0000,  0.8107,  0.2437,  0.0965, -0.9363],
        [ 0.0000,  0.0000,  0.0000,  1.5058,  0.6841,  1.7821],
        [ 0.0000,  0.0000,  0.0000,  0.0000, -0.2058, -0.0554]])
>>>
>>> torch.triu(b, diagonal=2)
tensor([[ 0.0000,  0.0000,  0.7176,  1.2692, -0.1408, -0.9948],
        [ 0.0000,  0.0000,  0.0000,  0.2437,  0.0965, -0.9363],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.6841,  1.7821],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000, -0.0554]])
>>>
>>> torch.triu(b, diagonal=-1)
tensor([[-1.3014, -1.2629,  0.7176,  1.2692, -0.1408, -0.9948],
        [ 1.4856, -1.1522,  0.8107,  0.2437,  0.0965, -0.9363],
        [ 0.0000, -0.6405, -0.3730,  1.5058,  0.6841,  1.7821],
        [ 0.0000,  0.0000,  0.1218,  1.1333, -0.2058, -0.0554]])
>>>
>>> torch.triu(b, diagonal=-2)
tensor([[-1.3014, -1.2629,  0.7176,  1.2692, -0.1408, -0.9948],
        [ 1.4856, -1.1522,  0.8107,  0.2437,  0.0965, -0.9363],
        [-0.2229, -0.6405, -0.3730,  1.5058,  0.6841,  1.7821],
        [ 0.0000, -0.2907,  0.1218,  1.1333, -0.2058, -0.0554]])
>>>
>>> exit()
(pt-1.4_py-3.6) yongqiang@yongqiang:~$

最后

以上就是纯情朋友为你收集整理的torch.triu() - torch.triu_() - v1.5.0 torch.triu() - torch.triu_() - v1.5.0 的全部内容,希望文章能够帮你解决torch.triu() - torch.triu_() - v1.5.0 torch.triu() - torch.triu_() - v1.5.0 所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部