我是靠谱客的博主 阳光爆米花,最近开发中收集的这篇文章主要介绍Redis系列(二) Redis的基本操作与持久化机制,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一. Redis常⽤数据类型以及应⽤场景

1. String 类型

介绍
  • string是Redis最基本的类型,⼀个key对应⼀个value,⼀个键最⼤能存储512MB。
  • string类型是⼆进制安全的。意思是Redis的string可以包含任何数据。⽐如jpg图⽚或者序列化对象。⼆进制安全是指,在传输数据时,保证⼆进制数据的信息安全,也就是不被篡改、破译等,如果有被攻 击,能够及时检测出来 跟Java的map ⾮常类似。Value是字符串。
语法

在这里插入图片描述

案例

SET key value
GET key
INCR           可以对应的key的数值(整型的数值)加⼀
INCRBY      给数值加上⼀个步⻓
SETEX expire    过期
SETNX not exist key     不存在的时候再去赋值

String 类型内存模型

在这里插入图片描述

应用场景

很常⻅的场景⽤于统计⽹站访问数量 pv(Page view),当前在线⼈数等。incr命令(++操作)。

2. List 类型

介绍

Redis的列表允许⽤户从序列的两端推⼊或者弹出元素,列表由多个字符串值组成的有序可重复的序列,是链表结构,所以向列表两端添加元素的时间复杂度为o(1),获取越接近两端的元素速度就越快。
这意味着即使是⼀个有⼏千万个元素的列表,获取头部或尾部的10条记录也是极快的。List中可以包含的最⼤元素数量是4294967295。

语法

在这里插入图片描述

List 类型内存模型

在这里插入图片描述

应用场景
  • 最新消息排⾏榜。
  • 消息队列,以完成多程序之间的消息交换。可以⽤push操作将任务存 在list中(⽣产者),然后线程在⽤pop操作将任务取出进⾏执⾏。(消费者)

3. Hash 类型

介绍

Redis中的散列可以看成具有String key和String value的map容器,可以将多个key-value存储到⼀个key中。每⼀个Hash可以存储4294967295个键值对。

语法

在这里插入图片描述

内存模型

在这里插入图片描述

应用场景

例如存储、读取、修改⽤户属性(name,age,pwd等)。

4. Set(⽆序集合)

介绍

Set类型 Set集合 元素无序 不可以重复

语法

在这里插入图片描述

内存模型

在这里插入图片描述

应用场景
  • 利⽤交集求共同好友。
  • 利⽤唯⼀性,可以统计访问⽹站的所有独⽴IP。
  • 好友推荐的时候根据tag求交集,⼤于某个threshold(临界值的)就可以推荐。

5. ZSet(有序集合)

介绍

ZSet 也称 SortSet , 特点: 可排序的set集合 排序 不可重复

语法

在这里插入图片描述

内存模型

在这里插入图片描述

应用场景

可以⽤于⼀个⼤型在线游戏的积分排⾏榜,每当玩家的分数发⽣变化时,可以执⾏zadd更新玩家分数(score),此后在通过zrange获取⼏分top ten的⽤户信息。

二 .Redis 持久化机制

1. 什么是持久化

持久化

什么是持久化?简单来讲就是将数据放到断电后数据不会丢失的设备中,也就是我们通常理解的硬盘上。

首先我们来看一下数据库在进行写操作时到底做了哪些事,主要有下面五个过程:

  • 客户端向服务端发送写操作(数据在客户端的内存中)。
  • 数据库服务端接收到写请求的数据(数据在服务端的内存中)。
  • 服务端调用write这个系统调用,将数据往磁盘上写(数据在系统内存的缓冲区中)。
  • 操作系统将缓冲区中的数据转移到磁盘控制器上(数据在磁盘缓存中)。
  • 磁盘控制器将数据写到磁盘的物理介质中(数据真正落到磁盘上)。
故障分析

写操作大致有上面5个流程,下面我们结合上面的5个流程看一下各种级别的故障:

  • 当数据库系统故障时,这时候系统内核还是完好的。那么此时只要我们执行完了第3步,那么数据就是安全的,因为后续操作系统会来完成后面几步,保证数据最终会落到磁盘上。
  • 当系统断电时,这时候上面5项中提到的所有缓存都会失效,并且数据库和操作系统都会停止工作。所以只有当数据在完成第5步后,才能保证在断电后数据不丢失。

通过上面5步的了解,可能我们会希望搞清下面一些问题:

  • 数据库多长时间调用一次write,将数据写到内核缓冲区?
  • 内核多长时间会将系统缓冲区中的数据写到磁盘控制器?
  • 磁盘控制器又在什么时候把缓存中的数据写到物理介质上?

对于第一个问题,通常数据库层面会进行全面控制。

而对第二个问题,操作系统有其默认的策略,但是我们也可以通过POSIX API提供的fsync系列命令强制操作系统将数据从内核区写到磁盘控制器上。

对于第三个问题,好像数据库已经无法触及,但实际上,大多数情况下磁盘缓存是被设置关闭的,或者是只开启为读缓存,也就是说写操作不会进行缓存,直接写到磁盘。

建议的做法是仅仅当你的磁盘设备有备用电池时才开启写缓存。

数据损坏

所谓数据损坏,就是数据无法恢复,上面我们讲的都是如何保证数据是确实写到磁盘上去,但是写到磁盘上可能并不意味着数据不会损坏。比如我们可能一次写请求会进行两次不同的写操作,当意外发生时,可能会导致一次写操作安全完成,但是另一次还没有进行。如果数据库的数据文件结构组织不合理,可能就会导致数据完全不能恢复的状况出现。

这里通常也有三种策略来组织数据,以防止数据文件损坏到无法恢复的情况:

  • 第一种是最粗糙的处理,就是不通过数据的组织形式保证数据的可恢复性。而是通过配置数据同步备份的方式,在数据文件损坏后通过数据备份来进行恢复。实际上MongoDB在不开启操作日志,通过配置ReplicaSets时就是这种情况。
  • 另一种是在上面基础上添加一个操作日志,每次操作时记一下操作的行为,这样我们可以通过操作日志来进行数据恢复。因为操作日志是顺序追加的方式写的,所以不会出现操作日志也无法恢复的情况。这也类似于MongoDB开启了操作日志的情况。
  • 更保险的做法是数据库不进行旧数据的修改,只是以追加方式去完成写操作,这样数据本身就是一份日志,这样就永远不会出现数据无法恢复的情况了。实际上CouchDB就是此做法的优秀范例。

2. RDB持久化

特点

RDB持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘。

也是默认的持久化方式,这种方式是就是将内存中数据以快照的方式写入到二进制文件中,默认的文件名为dump.rdb。

在这里插入图片描述

快照生成方式

(1)服务器配置方式之满足配置自动触发

可以通过配置设置自动做快照持久化的方式。我们可以配置redis在n秒内如果超过m个key被修改就自动做快照,下面是默认的快照保存配置 :

 save 900 1     #900秒内如果超过1个key被修改,则发起快照保存
 save 300 10    #300秒内容如超过10个key被修改,则发起快照保存
 save 60 10000

(2)使用客户端命令 bgsave

客户端可以使用BGSAVE命令来创建一个快照,当接收到客户端的BGSAVE命令时,redis会调用fork¹来创建一个子进程,然后子进程负责将快照写入磁盘中,而父进程则继续处理命令请求。

在这里插入图片描述
名词解释: fork
当一个进程创建子进程的时候,底层的操作系统会创建该进程的一个副本,在类unix系统中创建子进程的操作会进行优化:在刚开始的时候,父子进程共享相同内存,直到父进程或子进程对内存进行了写之后,对被写入的内存的共享才会结束服务`

(3)使用客户端命令 save

客户端还可以使用SAVE命令来创建一个快照,接收到SAVE命令的redis服务器在快照创建完毕之前将不再响应任何其他的命令。

在这里插入图片描述

RDB文件保存过程

  • redis调用fork,现在有了子进程和父进程。
  • 父进程继续处理client请求,子进程负责将内存内容写入到临时文件。由于os的写时复制机制(copy on write)父子进程会共享相同的物理页面,当父进程处理写请求时os会为父进程要修改的页面创建副本,而不是写共享的页面。所以子进程的地址空间内的数据是fork时刻整个数据库的一个快照。
  • 当子进程将快照写入临时文件完毕后,用临时文件替换原来的快照文件,然后子进程退出。

另一点需要注意的是,每次快照持久化都是将内存数据完整写入到磁盘一次,并不是增量的只同步脏数据。如果数据量大的话,而且写操作比较多,必然会引起大量的磁盘io操作,可能会严重影响性能。

RDB机制的优势
  • 一旦采用该方式,那么你的整个Redis数据库将只包含一个文件,这样非常方便进行备份。比如你可能打算没1天归档一些数据。
  • 方便备份,我们可以很容易的将一个一个RDB文件移动到其他的存储介质上
  • RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
  • RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是 fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。
RDB机制的劣势
  • 如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。 虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率, 但是, 因为RDB 文件需要保存整个数据集的状态, 所以它并不是一个轻松的操作。因此你可能会至少 5 分钟才保存一次 RDB 文件。 在这种情况下, 一旦发生故障停机, 你就可能会丢失好几分钟的数据。
  • 每次保存 RDB 的时候,Redis 都要 fork() 出一个子进程,并由子进程来进行实际的持久化工作。 在数据集比较庞大时,fork() 可能会非常耗时,造成服务器在某某毫秒内停止处理客户端; 如果数据集非常巨大,并且 CPU 时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。 虽然 AOF 重写也需要进行 fork() ,但无论 AOF 重写的执行间隔有多长,数据的耐久性都不会有任何损失。

3. AOF持久化

特点

这种方式可以将所有客户端执行的写命令记录到日志文件中,AOF持久化会将被执行的写命令写到AOF的文件末尾,以此来记录数据发生的变化,因此只要redis从头到尾执行一次AOF文件所包含的所有写命令,就可以恢复AOF文件的记录的数据集。

在这里插入图片描述

开启配置AOF持久化

在redis的默认配置中AOF持久化机制是没有开启的,需要在配置中开启

  • a.修改 appendonly yes 开启持久化
  • b.修改 appendfilename “appendonly.aof” 指定生成文件名称

在这里插入图片描述
配置日志追加频率 :

(1) always 【谨慎使用】

  • 说明: 每个redis写命令都要同步写入硬盘,严重降低redis速度
  • 解释: 如果用户使用了always选项,那么每个redis写命令都会被写入硬盘,从而将发生系统崩溃时出现的数据丢失减到最少;遗憾的是,因为这种同步策略需要对硬盘进行大量的写入操作,所以redis处理命令的速度会受到硬盘性能的限制;
  • 注意: 转盘式硬盘在这种频率下200左右个命令/s ; 固态硬盘(SSD) 几百万个命令/s;
  • 警告: 使用SSD用户请谨慎使用always选项,这种模式不断写入少量数据的做法有可能会引发严重的写入放大问题,导致将固态硬盘的寿命从原来的几年降低为几个月。

(2) everysec 【推荐】

  • 说明: 每秒执行一次同步显式的将多个写命令同步到磁盘
  • 解释: 为了兼顾数据安全和写入性能,用户可以考虑使用everysec选项,让redis每秒一次的频率对AOF文件进行同步;redis每秒同步一次AOF文件时性能和不使用任何持久化特性时的性能相差无几,而通过每秒同步一次AOF文件,redis可以保证,即使系统崩溃,用户最多丢失一秒之内产生的数据。

(3) no【不推荐】

  • 说明: 由操作系统决定何时同步
  • 解释:最后使用no选项,将完全有操作系统决定什么时候同步AOF日志文件,这个选项不会对redis性能带来影响但是系统崩溃时,会丢失不定数量的数据,另外如果用户硬盘处理写入操作不够快的话,当缓冲区被等待写入硬盘数据填满时,redis会处于阻塞状态,并导致redis的处理命令请求的速度变慢。

修改同步频率
在这里插入图片描述

AOF的文件重写

AOF的问题

AOF的方式也同时带来了另一个问题。持久化文件会变的越来越大。例如我们调用incr test命令100次,文件中必须保存全部的100条命令,其实有99条都是多余的。因为要恢复数据库的状态其实文件中保存一条set test 100就够了。为了压缩aof的持久化文件Redis提供了AOF重写(ReWriter)机制。

AOF的重写过程

为了压缩aof的持久化文件。redis提供了bgrewriteaof命令。收到此命令redis将使用与快照类似的方式将内存中的数据 以命令的方式保存到临时文件中,最后替换原来的文件。具体过程如下:

  • redis调用fork ,现在有父子两个进程
  • 子进程根据内存中的数据库快照,往临时文件中写入重建数据库状态的命令
  • 父进程继续处理client请求,除了把写命令写入到原来的aof文件中。同时把收到的写命令缓存起来。这样就能保证如果子进程重写失败的话并不会出问题。
  • 当子进程把快照内容以命令方式写到临时文件中后,子进程发信号通知父进程。然后父进程把缓存的写命令也写入到临时文件。
  • 现在父进程可以使用临时文件替换老的aof文件,并重命名,后面收到的写命令也开始往新的aof文件中追加。

需要注意到是重写aof文件的操作,并没有读取旧的aof文件,而是将整个内存中的数据库内容用命令的方式重写了一个新的aof文件,这点和快照有点类似。

在这里插入图片描述

触发重写方式

(1) 客户端方式触发重写

  • 执行BGREWRITEAOF命令 不会阻塞redis的服务

(2) 服务器配置方式自动触发

  • 配置redis.conf中的auto-aof-rewrite-percentage选项 参加下图↓↓↓
  • 如果设置auto-aof-rewrite-percentage值为100和auto-aof-rewrite-min-size 64mb,并且启用的AOF持久化时,那么当AOF文件体积大于64M,并且AOF文件的体积比上一次重写之后体积大了至少一倍(100%)时,会自动触发,如果重写过于频繁,用户可以考虑将auto-aof-rewrite-percentage设置为更大。

在这里插入图片描述

AOF持久化机制的优势
  • 使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
  • AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对 AOF 文件的写入不需要进行 seek ,即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。 Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
  • AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子,如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。
AOF持久化机制的劣势
  • 对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
  • 根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB
    可以提供更有保证的最大延迟时间(latency)。
  • AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。(举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试:它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见,但是对比来说, RDB 几乎是不可能出现这种 bug 的。

4. 持久化机制的选择

两种持久化方案既可以同时使用(aof),又可以单独使用,在某种情况下也可以都不使用,具体使用那种持久化方案取决于用户的数据和应用决定。

无论使用AOF还是快照机制持久化,将数据持久化到硬盘都是有必要的,除了持久化外,用户还应该对持久化的文件进行备份(最好备份在多个不同地方)。

最后

以上就是阳光爆米花为你收集整理的Redis系列(二) Redis的基本操作与持久化机制的全部内容,希望文章能够帮你解决Redis系列(二) Redis的基本操作与持久化机制所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(69)

评论列表共有 0 条评论

立即
投稿
返回
顶部