概述
文章目录
- 1 进程的基本概念
- 2 父进程和子进程
- 2.1 父子进程如何区分?
- 2.2 子进程如何回收?
- 3. Python进程模块
- 3.1 fork()
- 3.2 Process进程
- 3.3 进程池POOL (多个进程)
- 4 进程间通信方式
- 5 多进程实现生产者消费者
- 6 总结
1 进程的基本概念
什么是进程?
进程就是一个程序在一个数据集上的一次动态执行过程。进程一般由程序、数据集、进程控制块三部分组成。我们编写的程序用来描述进程要完成哪些功能以及如何完成;数据集则是程序在执行过程中所需要使用的资源;进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志。
进程的过程: 创建, 就绪, 运行 ,阻塞, 消亡 .
2 父进程和子进程
Linux 操作系统提供了一个 fork() 函数用来创建子进程,这个函数很特殊,调用一次,返回两次,因为操作系统是将当前的进程(父进程)复制了一份(子进程),然后分别在父进程和子进程内返回。子进程永远返回0,而父进程返回子进程的 PID。我们可以通过判断返回值是不是 0 来判断当前是在父进程还是子进程中执行。
在 Python 中同样提供了 fork() 函数,此函数位于 os 模块下。
# -*- coding: utf-8 -*-
import os
import time
print("在创建子进程前: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
pid = os.fork()
if pid == 0:
print("子进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
time.sleep(5)
else:
print("父进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
# pid表示回收的子进程的pid
#pid, result = os.wait()
# 回收子进程资源 阻塞
time.sleep(5)
#print("父进程:回收的子进程pid=%d" % pid)
#print("父进程:子进程退出时 result=%d" % result)
# 下面的内容会被打印两次,一次是在父进程中,一次是在子进程中。
# 父进程中拿到的返回值是创建的子进程的pid,大于0
print("fork创建完后: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
# 在创建子进程前: pid=8122, ppid=8075
# 父进程信息:
pid=8122, ppid=8075
# 子进程信息:
pid=8123, ppid=8122
# fork创建完后:
pid=8122, ppid=8075
# fork创建完后:
pid=8123, ppid=8122
# 取消13,14,15,16行注释后:
# 在创建子进程前: pid=8133, ppid=8075
# 父进程信息
: pid=8133, ppid=8075
# 子进程信息
: pid=8134, ppid=8133
# fork创建完后 : pid=8134, ppid=8133
# 父进程:回收的子进程pid=8134
# 父进程:子进程退出时 result=0
# fork创建完后 : pid=8133, ppid=8075
# getpid()得到本身进程id,getppid()得到父进程进程id,如果已经是父进程,得到系统进程id
2.1 父子进程如何区分?
子进程是父进程通过fork()产生出来的,pid = os.fork()
通过返回值pid是否为0,判断是否为子进程,如果是0,则表示是子进程
由于 fork() 是 Linux 上的概念,所以如果要跨平台,最好还是使用 subprocess 模块来创建子进程。
2.2 子进程如何回收?
python中采用os.wait()方法用来回收子进程占用的资源
pid, result = os.wait() # 回收子进程资源 阻塞,等待子进程执行完成回收
如果有子进程没有被回收的,但是父进程已经死掉了,这个子进程就是僵尸进程。
3. Python进程模块
python的进程multiprocessing模块有多种创建进程的方式,每种创建方式和进程资源的回收都不太相同,下面分别针对Process,Pool及系统自带的fork三种进程分析。
3.1 fork()
import os
pid = os.fork() # 创建一个子进程
os.wait() # 等待子进程结束释放资源
# pid为0的代表子进程。
缺点:
1.兼容性差,只能在类linux系统下使用,windows系统不可使用;
2.扩展性差,当需要多条进程的时候,进程管理变得很复杂;
3.会产生“孤儿”进程和“僵尸”进程,需要手动回收资源。
优点:
是系统自带的接近低层的创建方式,运行效率高。
3.2 Process进程
multiprocessing模块提供Process类实现新建进程
# -*- coding: utf-8 -*-
import os
from multiprocessing
import Process
import time
def fun(name):
print("2 子进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
print("hello " + name)
def test():
print('ssss')
if __name__ == "__main__":
print("1 主进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
ps = Process(target=fun, args=('jingsanpang', ))
print("111 ##### ps pid: " + str(ps.pid) + ", ident:" + str(ps.ident))
print("3 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
print(ps.is_alive())
ps.start()
print(ps.is_alive())
print("222 #### ps pid: " + str(ps.pid) + ", ident:" + str(ps.ident))
print("4 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
ps.join()
print(ps.is_alive())
print("5 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
ps.terminate()
print("6 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
# 1 主进程信息: pid=8143, ppid=8075
# 111 ##### ps pid: None, ident:None
# 3 进程信息: pid=8143, ppid=8075
# False
# True
# 222 #### ps pid: 8144, ident:8144
# 4 进程信息: pid=8143, ppid=8075
# 2 子进程信息: pid=8144, ppid=8143
# hello jingsanpang
# False
# 5 进程信息: pid=8143, ppid=8075
# 6 进程信息: pid=8143, ppid=8075
特点:
1.注意:Process对象可以创建进程,但Process对象不是进程,其删除与否与系统资源是否被回收没有直接的关系。
2.主进程执行完毕后会默认等待子进程结束后回收资源,不需要手动回收资源;join()函数用来控制子进程
结束的顺序,其内部也有一个清除僵尸进程的函数,可以回收资源;
3.Process进程创建时,子进程会将主进程的Process对象完全复制一份,这样在主进程和子进程各有一个 Process对象,但是p.start()启动的是子进程,主进程中的Process对象作为一个静态对象存在,不执行。
4.当子进程执行完毕后,会产生一个僵尸进程,其会被join函数回收,或者再有一条进程开启,start函数也会回收僵尸进程,所以不一定需要写join函数。
5.windows系统在子进程结束后会立即自动清除子进程的Process对象,而linux系统子进程的Process对象如果没有join函数和start函数的话会在主进程结束后统一清除。
另外还可以通过继承Process对象来重写run方法创建进程
3.3 进程池POOL (多个进程)
# -*- coding: utf-8 -*-
import multiprocessing
import time
def work(msg):
mult_proces_name = multiprocessing.current_process().name
time.sleep(2)
print('process: ' + mult_proces_name + '-' + msg)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=5) # 创建5个进程
for i in range(10):
msg = "process %d" %(i)
pool.apply_async(work, (msg, ))
pool.close() # 关闭进程池,表示不能在往进程池中添加进程
pool.join() # 等待进程池中的所有进程执行完毕,必须在close()之后调用
print("Sub-process all done.")
# process: ForkPoolWorker-3-process 3
# process: ForkPoolWorker-2-process 0
# process: ForkPoolWorker-4-process 2
# process: ForkPoolWorker-1-process 1
# process: ForkPoolWorker-5-process 4
每5个进程一起
# process: ForkPoolWorker-3-process 5
# process: ForkPoolWorker-2-process 6
# process: ForkPoolWorker-4-process 7
# process: ForkPoolWorker-1-process 8
# process: ForkPoolWorker-5-process 9
# Sub-process all done.
上述代码中的pool.apply_async()
是apply()
函数的变体,apply_async()
是apply()
的并行版本,apply()
是apply_async()
的阻塞版本,使用apply()
主进程会被阻塞直到函数执行结束,所以说是阻塞版本。apply()
既是Pool
的方法,也是Python内置的函数,两者等价。可以看到输出结果并不是按照代码for循环中的顺序输出的。 async 异步
多个子进程并返回值
apply_async()
本身就可以返回被进程调用的函数的返回值。上一个创建多个子进程的代码中,如果在函数func
中返回一个值,那么pool.apply_async(func, (msg, ))
的结果就是返回pool中所有进程的值的对象(注意是对象,不是值本身)。
import multiprocessing
import time
def func(msg):
time.sleep(2)
return multiprocessing.current_process().name + '-' + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4) # 创建4个进程
results = []
for i in range(10):
msg = "process %d" %(i)
results.append(pool.apply_async(func, (msg, )))
pool.close() # 关闭进程池,表示不能再往进程池中添加进程,需要在join之前调用
pool.join() # 等待进程池中的所有进程执行完毕
print ("Sub-process(es) done.")
for res in results:
print (res.get())
# Sub-process(es) done.
# ForkPoolWorker-2-process 0
# ForkPoolWorker-4-process 1
# ForkPoolWorker-3-process 2
# ForkPoolWorker-1-process 3
# ForkPoolWorker-3-process 4
# ForkPoolWorker-2-process 5
# ForkPoolWorker-1-process 6
# ForkPoolWorker-4-process 7
# ForkPoolWorker-2-process 8
# ForkPoolWorker-3-process 9
# ForkPoolWorker-1-process 10
# ForkPoolWorker-4-process 11
与之前的输出不同,这次的输出是有序的。
如果电脑是八核,建立8个进程,在Ubuntu下输入top命令再按下大键盘的1,可以看到每个CPU的使用率是比较平均的
4 进程间通信方式
- 管道pipe:管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
- 命名管道FIFO:有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
- 消息队列MessageQueue:消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
- 共享存储SharedMemory:共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。
以上几种进程间通信方式中,消息队列是使用的比较频繁的方式。
(1)管道pipe
import multiprocessing
def foo(sk):
sk.send('hello father')
print(sk.recv())
if __name__ == '__main__':
conn1,conn2=multiprocessing.Pipe()
#开辟两个口,都是能进能出,括号中如果False即单向通信
p=multiprocessing.Process(target=foo,args=(conn1,))
#子进程使用sock口,调用foo函数
p.start()
print(conn2.recv())
#主进程使用conn口接收
conn2.send('hi son') #主进程使用conn口发送
(2)消息队列Queue
Queue是多进程的安全队列,可以使用Queue实现多进程之间的数据传递。
Queue的一些常用方法:
- Queue.qsize():返回当前队列包含的消息数量;
- Queue.empty():如果队列为空,返回True,反之False ;
- Queue.full():如果队列满了,返回True,反之False;
- Queue.get():获取队列中的一条消息,然后将其从列队中移除,可传参超时时长。
- Queue.get_nowait():相当Queue.get(False),取不到值时触发异常:Empty;
- Queue.put():将一个值添加进数列,可传参超时时长。
- Queue.put_nowait():相当于Queue.get(False),当队列满了时报错:Full。
案例:
from multiprocessing import Process, Queue
import time
def write(q):
for i in ['A', 'B', 'C', 'D', 'E']:
print('Put %s to queue' % i)
q.put(i)
time.sleep(0.5)
def read(q):
while True:
v = q.get(True)
print('get %s from queue' % v)
if __name__ == '__main__':
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
print('write process = ', pw)
print('read
process = ', pr)
pw.start()
pr.start()
pw.join()
pr.join()
pr.terminate()
pw.terminate()
Queue和pipe只是实现了数据交互,并没实现数据共享,即一个进程去更改另一个进程的数据**。**
注:进程间通信应该尽量避免使用共享数据的方式
5 多进程实现生产者消费者
以下通过多进程实现生产者,消费者模式
import multiprocessing
from multiprocessing import Process
from time import sleep
import time
class MultiProcessProducer(multiprocessing.Process):
def __init__(self, num, queue):
"""Constructor"""
multiprocessing.Process.__init__(self)
self.num = num
self.queue = queue
def run(self):
t1 = time.time()
print('producer start ' + str(self.num))
for i in range(1000):
self.queue.put((i, self.num))
# print 'producer put', i, self.num
t2 = time.time()
print('producer exit ' + str(self.num))
use_time = str(t2 - t1)
print('producer ' + str(self.num) + ',
use_time: '+ use_time)
class MultiProcessConsumer(multiprocessing.Process):
def __init__(self, num, queue):
"""Constructor"""
multiprocessing.Process.__init__(self)
self.num = num
self.queue = queue
def run(self):
t1 = time.time()
print('consumer start ' + str(self.num))
while True:
d = self.queue.get()
if d != None:
# print 'consumer get', d, self.num
continue
else:
break
t2 = time.time()
print('consumer exit ' + str(self.num))
print('consumer ' + str(self.num) + ', use time:' + str(t2 - t1))
def main():
# create queue
queue = multiprocessing.Queue()
# create processes
producer = []
for i in range(5):
producer.append(MultiProcessProducer(i, queue))
consumer = []
for i in range(5):
consumer.append(MultiProcessConsumer(i, queue))
# start processes
for i in range(len(producer)):
producer[i].start()
for i in range(len(consumer)):
consumer[i].start()
# wait for processs to exit
for i in range(len(producer)):
producer[i].join()
for i in range(len(consumer)):
queue.put(None)
for i in range(len(consumer)):
consumer[i].join()
print('all done finish')
if __name__ == "__main__":
main()
6 总结
python中的多进程创建有以下两种方式:
(1)fork子进程 ( linux )
(2)采用 multiprocessing 这个库创建子进程
需要注意的是队列中Queue.Queue是线程安全的,但并不是进程安全,所以多进程一般使用线程、进程安全的multiprocessing.Queue()
另外, 进程池使用 multiprocessing.Pool实现,pool = multiprocessing.Pool(processes = 3),产生一个进程池,pool.apply_async实现非租塞模式,pool.apply实现阻塞模式。
apply_async和 apply函数,前者是非阻塞的,后者是阻塞。可以看出运行时间相差的倍数正是进程池数量。
同时可以通过result.append(pool.apply_async(func, (msg, )))获取非租塞式调用结果信息的。
最后
以上就是年轻自行车为你收集整理的python多进程原理及其实现的全部内容,希望文章能够帮你解决python多进程原理及其实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复