概述
随机事件和概率
1.事件的关系与运算
(1) 子事件: A ⊂ B A subset B A⊂B,若 A A A发生,则 B B B发生。
(2) 相等事件: A = B A = B A=B,即 A ⊂ B A subset B A⊂B,且 B ⊂ A B subset A B⊂A 。
(3) 和事件: A ⋃ B Abigcup B A⋃B(或 A + B A + B A+B), A A A与 B B B中至少有一个发生。
(4) 差事件: A − B A - B A−B, A A A发生但 B B B不发生。
(5) 积事件: A ⋂ B Abigcap B A⋂B(或 A B {AB} AB), A A A与 B B B同时发生。
(6) 互斥事件(互不相容): A ⋂ B Abigcap B A⋂B= ∅ varnothing ∅。
(7) 互逆事件(对立事件):
A
⋂
B
=
∅
,
A
⋃
B
=
Ω
,
A
=
B
ˉ
,
B
=
A
ˉ
Abigcap B=varnothing ,Abigcup B=Omega ,A=bar{B},B=bar{A}
A⋂B=∅,A⋃B=Ω,A=Bˉ,B=Aˉ
2.运算律
(1) 交换律: A ⋃ B = B ⋃ A , A ⋂ B = B ⋂ A Abigcup B=Bbigcup A,Abigcap B=Bbigcap A A⋃B=B⋃A,A⋂B=B⋂A
(2) 结合律: ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) (Abigcup B)bigcup C=Abigcup (Bbigcup C) (A⋃B)⋃C=A⋃(B⋃C)
(3) 分配律: ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) (Abigcap B)bigcap C=Abigcap (Bbigcap C) (A⋂B)⋂C=A⋂(B⋂C)
3.德$centerdot $摩根律
A ⋃ B ‾ = A ˉ ⋂ B ˉ overline{Abigcup B}=bar{A}bigcap bar{B} A⋃B=Aˉ⋂Bˉ A ⋂ B ‾ = A ˉ ⋃ B ˉ overline{Abigcap B}=bar{A}bigcup bar{B} A⋂B=Aˉ⋃Bˉ
4.完全事件组
A 1 A 2 ⋯ A n {{A}_{1}}{{A}_{2}}cdots {{A}_{n}} A1A2⋯An两两互斥,且和事件为必然事件,即${{A}{i}}bigcap {{A}{j}}=varnothing, ine j ,underset{i=1}{overset{n}{mathop bigcup }},=Omega $
5.概率的基本公式
(1)条件概率:
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=frac{P(AB)}{P(A)} P(B∣A)=P(A)P(AB),表示 A A A发生的条件下, B B B发生的概率。
(2)全概率公式:
P
(
A
)
=
∑
i
=
1
n
P
(
A
∣
B
i
)
P
(
B
i
)
P(A)=sumlimits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}
P(A)=i=1∑nP(A∣Bi)P(Bi)
(3) Bayes公式:
P
(
B
j
∣
A
)
=
P
(
A
∣
B
j
)
P
(
B
j
)
∑
i
=
1
n
P
(
A
∣
B
i
)
P
(
B
i
)
,
j
=
1
,
2
,
⋯
,
n
P({{B}_{j}}|A)=frac{P(A|{{B}_{j}})P({{B}_{j}})}{sumlimits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,cdots ,n
P(Bj∣A)=i=1∑nP(A∣Bi)P(Bi)P(A∣Bj)P(Bj),j=1,2,⋯,n
注:上述公式中事件
B
i
{{B}_{i}}
Bi的个数可为可列个。
(4)乘法公式:
P
(
A
1
A
2
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
=
P
(
A
2
)
P
(
A
1
∣
A
2
)
P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})
P(A1A2)=P(A1)P(A2∣A1)=P(A2)P(A1∣A2)
P
(
A
1
A
2
⋯
A
n
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
P
(
A
3
∣
A
1
A
2
)
⋯
P
(
A
n
∣
A
1
A
2
⋯
A
n
−
1
)
P({{A}_{1}}{{A}_{2}}cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}cdots {{A}_{n-1}})
P(A1A2⋯An)=P(A1)P(A2∣A1)P(A3∣A1A2)⋯P(An∣A1A2⋯An−1)
6.事件的独立性
(1) A A A与 B B B相互独立 ⇔ P ( A B ) = P ( A ) P ( B ) Leftrightarrow P(AB)=P(A)P(B) ⇔P(AB)=P(A)P(B)
(2)
A
A
A,
B
B
B,
C
C
C两两独立
⇔
P
(
A
B
)
=
P
(
A
)
P
(
B
)
Leftrightarrow P(AB)=P(A)P(B)
⇔P(AB)=P(A)P(B);
P
(
B
C
)
=
P
(
B
)
P
(
C
)
P(BC)=P(B)P(C)
P(BC)=P(B)P(C) ;
P
(
A
C
)
=
P
(
A
)
P
(
C
)
P(AC)=P(A)P(C)
P(AC)=P(A)P(C);
(3)
A
A
A,
B
B
B,
C
C
C相互独立
⇔
P
(
A
B
)
=
P
(
A
)
P
(
B
)
Leftrightarrow P(AB)=P(A)P(B)
⇔P(AB)=P(A)P(B);
P
(
B
C
)
=
P
(
B
)
P
(
C
)
P(BC)=P(B)P(C)
P(BC)=P(B)P(C) ;
P
(
A
C
)
=
P
(
A
)
P
(
C
)
P(AC)=P(A)P(C)
P(AC)=P(A)P(C) ;
P
(
A
B
C
)
=
P
(
A
)
P
(
B
)
P
(
C
)
P(ABC)=P(A)P(B)P(C)
P(ABC)=P(A)P(B)P(C)
7.独立重复试验
将某试验独立重复
n
n
n次,若每次实验中事件A发生的概率为
p
p
p,则
n
n
n次试验中
A
A
A发生
k
k
k次的概率为:
P
(
X
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}
P(X=k)=Cnkpk(1−p)n−k
8.重要公式与结论
( 1 ) P ( A ˉ ) = 1 − P ( A ) (1)P(bar{A})=1-P(A) (1)P(Aˉ)=1−P(A)
(
2
)
P
(
A
⋃
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
(2)P(Abigcup B)=P(A)+P(B)-P(AB)
(2)P(A⋃B)=P(A)+P(B)−P(AB)
P
(
A
⋃
B
⋃
C
)
=
P
(
A
)
+
P
(
B
)
+
P
(
C
)
−
P
(
A
B
)
−
P
(
B
C
)
−
P
(
A
C
)
+
P
(
A
B
C
)
P(Abigcup Bbigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)
P(A⋃B⋃C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)
( 3 ) P ( A − B ) = P ( A ) − P ( A B ) (3)P(A-B)=P(A)-P(AB) (3)P(A−B)=P(A)−P(AB)
( 4 ) P ( A B ˉ ) = P ( A ) − P ( A B ) , P ( A ) = P ( A B ) + P ( A B ˉ ) , (4)P(Abar{B})=P(A)-P(AB),P(A)=P(AB)+P(Abar{B}), (4)P(ABˉ)=P(A)−P(AB),P(A)=P(AB)+P(ABˉ),
P ( A ⋃ B ) = P ( A ) + P ( A ˉ B ) = P ( A B ) + P ( A B ˉ ) + P ( A ˉ B ) P(Abigcup B)=P(A)+P(bar{A}B)=P(AB)+P(Abar{B})+P(bar{A}B) P(A⋃B)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)
(5)条件概率
P
(
⋅
∣
B
)
P(centerdot |B)
P(⋅∣B)满足概率的所有性质,
例如:.
P
(
A
ˉ
1
∣
B
)
=
1
−
P
(
A
1
∣
B
)
P({{bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)
P(Aˉ1∣B)=1−P(A1∣B)
P
(
A
1
⋃
A
2
∣
B
)
=
P
(
A
1
∣
B
)
+
P
(
A
2
∣
B
)
−
P
(
A
1
A
2
∣
B
)
P({{A}_{1}}bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)
P(A1⋃A2∣B)=P(A1∣B)+P(A2∣B)−P(A1A2∣B)
P
(
A
1
A
2
∣
B
)
=
P
(
A
1
∣
B
)
P
(
A
2
∣
A
1
B
)
P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)
P(A1A2∣B)=P(A1∣B)P(A2∣A1B)
(6)若
A
1
,
A
2
,
⋯
,
A
n
{{A}_{1}},{{A}_{2}},cdots ,{{A}_{n}}
A1,A2,⋯,An相互独立,则
P
(
⋂
i
=
1
n
A
i
)
=
∏
i
=
1
n
P
(
A
i
)
,
P(bigcaplimits_{i=1}^{n}{{{A}_{i}}})=prodlimits_{i=1}^{n}{P({{A}_{i}})},
P(i=1⋂nAi)=i=1∏nP(Ai),
P
(
⋃
i
=
1
n
A
i
)
=
∏
i
=
1
n
(
1
−
P
(
A
i
)
)
P(bigcuplimits_{i=1}^{n}{{{A}_{i}}})=prodlimits_{i=1}^{n}{(1-P({{A}_{i}}))}
P(i=1⋃nAi)=i=1∏n(1−P(Ai))
(7)互斥、互逆与独立性之间的关系:
A
A
A与
B
B
B互逆
⇒
Rightarrow
⇒
A
A
A与
B
B
B互斥,但反之不成立,
A
A
A与
B
B
B互斥(或互逆)且均非零概率事件$Rightarrow $
A
A
A与
B
B
B不独立.
(8)若 A 1 , A 2 , ⋯ , A m , B 1 , B 2 , ⋯ , B n {{A}_{1}},{{A}_{2}},cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},cdots ,{{B}_{n}} A1,A2,⋯,Am,B1,B2,⋯,Bn相互独立,则 f ( A 1 , A 2 , ⋯ , A m ) f({{A}_{1}},{{A}_{2}},cdots ,{{A}_{m}}) f(A1,A2,⋯,Am)与 g ( B 1 , B 2 , ⋯ , B n ) g({{B}_{1}},{{B}_{2}},cdots ,{{B}_{n}}) g(B1,B2,⋯,Bn)也相互独立,其中 f ( ⋅ ) , g ( ⋅ ) f(centerdot ),g(centerdot ) f(⋅),g(⋅)分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.
随机变量及其概率分布
1.随机变量及概率分布
取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律
2.分布函数的概念与性质
定义: F ( x ) = P ( X ≤ x ) , − ∞ < x < + ∞ F(x) = P(X leq x), - infty < x < + infty F(x)=P(X≤x),−∞<x<+∞
性质:(1) 0 ≤ F ( x ) ≤ 1 0 leq F(x) leq 1 0≤F(x)≤1
(2) F ( x ) F(x) F(x)单调不减
(3) 右连续 F ( x + 0 ) = F ( x ) F(x + 0) = F(x) F(x+0)=F(x)
(4) F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F( - infty) = 0,F( + infty) = 1 F(−∞)=0,F(+∞)=1
3.离散型随机变量的概率分布
P ( X = x i ) = p i , i = 1 , 2 , ⋯ , n , ⋯ p i ≥ 0 , ∑ i = 1 ∞ p i = 1 P(X = x_{i}) = p_{i},i = 1,2,cdots,n,cdotsquadquad p_{i} geq 0,sum_{i =1}^{infty}p_{i} = 1 P(X=xi)=pi,i=1,2,⋯,n,⋯pi≥0,∑i=1∞pi=1
4.连续型随机变量的概率密度
概率密度 f ( x ) f(x) f(x);非负可积,且:
(1) f ( x ) ≥ 0 , f(x) geq 0, f(x)≥0,
(2) ∫ − ∞ + ∞ f ( x ) d x = 1 int_{- infty}^{+infty}{f(x){dx} = 1} ∫−∞+∞f(x)dx=1
(3) x x x为 f ( x ) f(x) f(x)的连续点,则:
f ( x ) = F ′ ( x ) f(x) = F'(x) f(x)=F′(x)分布函数 F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = int_{- infty}^{x}{f(t){dt}} F(x)=∫−∞xf(t)dt
5.常见分布
(1) 0-1分布: P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1 P(X=k)=pk(1−p)1−k,k=0,1
(2) 二项分布: B ( n , p ) B(n,p) B(n,p): P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯ , n P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,cdots,n P(X=k)=Cnkpk(1−p)n−k,k=0,1,⋯,n
(3) Poisson分布: p ( λ ) p(lambda) p(λ): P ( X = k ) = λ k k ! e − λ , λ > 0 , k = 0 , 1 , 2 ⋯ P(X = k) = frac{lambda^{k}}{k!}e^{-lambda},lambda > 0,k = 0,1,2cdots P(X=k)=k!λke−λ,λ>0,k=0,1,2⋯
(4) 均匀分布 U ( a , b ) U(a,b) U(a,b):$f(x) = { begin{matrix} & frac{1}{b - a},a < x< b & 0, end{matrix} $
(5) 正态分布: N ( μ , σ 2 ) : N(mu,sigma^{2}): N(μ,σ2): φ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , σ > 0 , ∞ < x < + ∞ varphi(x) =frac{1}{sqrt{2pi}sigma}e^{- frac{{(x - mu)}^{2}}{2sigma^{2}}},sigma > 0,infty < x < + infty φ(x)=2πσ1e−2σ2(x−μ)2,σ>0,∞<x<+∞
(6)指数分布:$E(lambda):f(x) ={ begin{matrix} & lambda e^{-{λx}},x > 0,lambda > 0 & 0, end{matrix} $
(7)几何分布: G ( p ) : P ( X = k ) = ( 1 − p ) k − 1 p , 0 < p < 1 , k = 1 , 2 , ⋯ . G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,cdots. G(p):P(X=k)=(1−p)k−1p,0<p<1,k=1,2,⋯.
(8)超几何分布: H ( N , M , n ) : P ( X = k ) = C M k C N − M n − k C N n , k = 0 , 1 , ⋯ , m i n ( n , M ) H(N,M,n):P(X = k) = frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,cdots,min(n,M) H(N,M,n):P(X=k)=CNnCMkCN−Mn−k,k=0,1,⋯,min(n,M)
6.随机变量函数的概率分布
(1)离散型: P ( X = x 1 ) = p i , Y = g ( X ) P(X = x_{1}) = p_{i},Y = g(X) P(X=x1)=pi,Y=g(X)
则: P ( Y = y j ) = ∑ g ( x i ) = y i P ( X = x i ) P(Y = y_{j}) = sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})} P(Y=yj)=∑g(xi)=yiP(X=xi)
(2)连续型: X ~ f X ( x ) , Y = g ( x ) Xtilde{ }f_{X}(x),Y = g(x) X ~fX(x),Y=g(x)
则: F y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = ∫ g ( x ) ≤ y f x ( x ) d x F_{y}(y) = P(Y leq y) = P(g(X) leq y) = int_{g(x) leq y}^{}{f_{x}(x)dx} Fy(y)=P(Y≤y)=P(g(X)≤y)=∫g(x)≤yfx(x)dx, f Y ( y ) = F Y ′ ( y ) f_{Y}(y) = F'_{Y}(y) fY(y)=FY′(y)
7.重要公式与结论
(1) X ∼ N ( 0 , 1 ) ⇒ φ ( 0 ) = 1 2 π , Φ ( 0 ) = 1 2 , Xsim N(0,1) Rightarrow varphi(0) = frac{1}{sqrt{2pi}},Phi(0) =frac{1}{2}, X∼N(0,1)⇒φ(0)=2π1,Φ(0)=21, Φ ( − a ) = P ( X ≤ − a ) = 1 − Φ ( a ) Phi( - a) = P(X leq - a) = 1 - Phi(a) Φ(−a)=P(X≤−a)=1−Φ(a)
(2) X ∼ N ( μ , σ 2 ) ⇒ X − μ σ ∼ N ( 0 , 1 ) , P ( X ≤ a ) = Φ ( a − μ σ ) Xsim Nleft( mu,sigma^{2} right) Rightarrow frac{X -mu}{sigma}sim Nleft( 0,1 right),P(X leq a) = Phi(frac{a -mu}{sigma}) X∼N(μ,σ2)⇒σX−μ∼N(0,1),P(X≤a)=Φ(σa−μ)
(3) X ∼ E ( λ ) ⇒ P ( X > s + t ∣ X > s ) = P ( X > t ) Xsim E(lambda) Rightarrow P(X > s + t|X > s) = P(X > t) X∼E(λ)⇒P(X>s+t∣X>s)=P(X>t)
(4) X ∼ G ( p ) ⇒ P ( X = m + k ∣ X > m ) = P ( X = k ) Xsim G(p) Rightarrow P(X = m + k|X > m) = P(X = k) X∼G(p)⇒P(X=m+k∣X>m)=P(X=k)
(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。
(6) 存在既非离散也非连续型随机变量。
多维随机变量及其分布
1.二维随机变量及其联合分布
由两个随机变量构成的随机向量 ( X , Y ) (X,Y) (X,Y), 联合分布为 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y) = P(X leq x,Y leq y) F(x,y)=P(X≤x,Y≤y)
2.二维离散型随机变量的分布
(1) 联合概率分布律 P { X = x i , Y = y j } = p i j ; i , j = 1 , 2 , ⋯ P{ X = x_{i},Y = y_{j}} = p_{{ij}};i,j =1,2,cdots P{X=xi,Y=yj}=pij;i,j=1,2,⋯
(2) 边缘分布律 p i ⋅ = ∑ j = 1 ∞ p i j , i = 1 , 2 , ⋯ p_{i cdot} = sum_{j = 1}^{infty}p_{{ij}},i =1,2,cdots pi⋅=∑j=1∞pij,i=1,2,⋯ p ⋅ j = ∑ i ∞ p i j , j = 1 , 2 , ⋯ p_{cdot j} = sum_{i}^{infty}p_{{ij}},j = 1,2,cdots p⋅j=∑i∞pij,j=1,2,⋯
(3) 条件分布律
P
{
X
=
x
i
∣
Y
=
y
j
}
=
p
i
j
p
⋅
j
P{ X = x_{i}|Y = y_{j}} = frac{p_{{ij}}}{p_{cdot j}}
P{X=xi∣Y=yj}=p⋅jpij
P
{
Y
=
y
j
∣
X
=
x
i
}
=
p
i
j
p
i
⋅
P{ Y = y_{j}|X = x_{i}} = frac{p_{{ij}}}{p_{i cdot}}
P{Y=yj∣X=xi}=pi⋅pij
3. 二维连续性随机变量的密度
(1) 联合概率密度 f ( x , y ) : f(x,y): f(x,y):
-
f ( x , y ) ≥ 0 f(x,y) geq 0 f(x,y)≥0
-
∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 int_{- infty}^{+ infty}{int_{- infty}^{+ infty}{f(x,y)dxdy}} = 1 ∫−∞+∞∫−∞+∞f(x,y)dxdy=1
(2) 分布函数: F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x,y) = int_{- infty}^{x}{int_{- infty}^{y}{f(u,v)dudv}} F(x,y)=∫−∞x∫−∞yf(u,v)dudv
(3) 边缘概率密度: f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_{X}left( x right) = int_{- infty}^{+ infty}{fleft( x,y right){dy}} fX(x)=∫−∞+∞f(x,y)dy f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_{Y}(y) = int_{- infty}^{+ infty}{f(x,y)dx} fY(y)=∫−∞+∞f(x,y)dx
(4) 条件概率密度: f X ∣ Y ( x | y ) = f ( x , y ) f Y ( y ) f_{X|Y}left( x middle| y right) = frac{fleft( x,y right)}{f_{Y}left( y right)} fX∣Y(x∣y)=fY(y)f(x,y) f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x) = frac{f(x,y)}{f_{X}(x)} fY∣X(y∣x)=fX(x)f(x,y)
4.常见二维随机变量的联合分布
(1) 二维均匀分布: ( x , y ) ∼ U ( D ) (x,y) sim U(D) (x,y)∼U(D) , f ( x , y ) = { 1 S ( D ) , ( x , y ) ∈ D 0 , 其他 f(x,y) = begin{cases} frac{1}{S(D)},(x,y) in D \ 0,其他 end{cases} f(x,y)={S(D)1,(x,y)∈D0,其他
(2) 二维正态分布: ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)sim N(mu_{1},mu_{2},sigma_{1}^{2},sigma_{2}^{2},rho) (X,Y)∼N(μ1,μ2,σ12,σ22,ρ), ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)sim N(mu_{1},mu_{2},sigma_{1}^{2},sigma_{2}^{2},rho) (X,Y)∼N(μ1,μ2,σ12,σ22,ρ)
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 . exp { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } f(x,y) = frac{1}{2pisigma_{1}sigma_{2}sqrt{1 - rho^{2}}}.expleft{ frac{- 1}{2(1 - rho^{2})}lbrackfrac{{(x - mu_{1})}^{2}}{sigma_{1}^{2}} - 2rhofrac{(x - mu_{1})(y - mu_{2})}{sigma_{1}sigma_{2}} + frac{{(y - mu_{2})}^{2}}{sigma_{2}^{2}}rbrack right} f(x,y)=2πσ1σ21−ρ21.exp{2(1−ρ2)−1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]}
5.随机变量的独立性和相关性
X X X和 Y Y Y的相互独立: ⇔ F ( x , y ) = F X ( x ) F Y ( y ) Leftrightarrow Fleft( x,y right) = F_{X}left( x right)F_{Y}left( y right) ⇔F(x,y)=FX(x)FY(y):
⇔
p
i
j
=
p
i
⋅
⋅
p
⋅
j
Leftrightarrow p_{{ij}} = p_{i cdot} cdot p_{cdot j}
⇔pij=pi⋅⋅p⋅j(离散型)
⇔
f
(
x
,
y
)
=
f
X
(
x
)
f
Y
(
y
)
Leftrightarrow fleft( x,y right) = f_{X}left( x right)f_{Y}left( y right)
⇔f(x,y)=fX(x)fY(y)(连续型)
X X X和 Y Y Y的相关性:
相关系数
ρ
X
Y
=
0
rho_{{XY}} = 0
ρXY=0时,称
X
X
X和
Y
Y
Y不相关,
否则称
X
X
X和
Y
Y
Y相关
6.两个随机变量简单函数的概率分布
离散型: P ( X = x i , Y = y i ) = p i j , Z = g ( X , Y ) Pleft( X = x_{i},Y = y_{i} right) = p_{{ij}},Z = gleft( X,Y right) P(X=xi,Y=yi)=pij,Z=g(X,Y) 则:
P ( Z = z k ) = P { g ( X , Y ) = z k } = ∑ g ( x i , y i ) = z k P ( X = x i , Y = y j ) P(Z = z_{k}) = Pleft{ gleft( X,Y right) = z_{k} right} = sum_{gleft( x_{i},y_{i} right) = z_{k}}^{}{Pleft( X = x_{i},Y = y_{j} right)} P(Z=zk)=P{g(X,Y)=zk}=∑g(xi,yi)=zkP(X=xi,Y=yj)
连续型:
(
X
,
Y
)
∼
f
(
x
,
y
)
,
Z
=
g
(
X
,
Y
)
left( X,Y right) sim fleft( x,y right),Z = gleft( X,Y right)
(X,Y)∼f(x,y),Z=g(X,Y)
则:
F z ( z ) = P { g ( X , Y ) ≤ z } = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y F_{z}left( z right) = Pleft{ gleft( X,Y right) leq z right} = iint_{g(x,y) leq z}^{}{f(x,y)dxdy} Fz(z)=P{g(X,Y)≤z}=∬g(x,y)≤zf(x,y)dxdy, f z ( z ) = F z ′ ( z ) f_{z}(z) = F'_{z}(z) fz(z)=Fz′(z)
7.重要公式与结论
(1) 边缘密度公式:
f
X
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
,
f_{X}(x) = int_{- infty}^{+ infty}{f(x,y)dy,}
fX(x)=∫−∞+∞f(x,y)dy,
f
Y
(
y
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
f_{Y}(y) = int_{- infty}^{+ infty}{f(x,y)dx}
fY(y)=∫−∞+∞f(x,y)dx
(2) P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y Pleft{ left( X,Y right) in D right} = iint_{D}^{}{fleft( x,y right){dxdy}} P{(X,Y)∈D}=∬Df(x,y)dxdy
(3) 若
(
X
,
Y
)
(X,Y)
(X,Y)服从二维正态分布
N
(
μ
1
,
μ
2
,
σ
1
2
,
σ
2
2
,
ρ
)
N(mu_{1},mu_{2},sigma_{1}^{2},sigma_{2}^{2},rho)
N(μ1,μ2,σ12,σ22,ρ)
则有:
-
X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) . Xsim Nleft( mu_{1},sigma_{1}^{2} right),Ysim N(mu_{2},sigma_{2}^{2}). X∼N(μ1,σ12),Y∼N(μ2,σ22).
-
X X X与 Y Y Y相互独立 ⇔ ρ = 0 Leftrightarrow rho = 0 ⇔ρ=0,即 X X X与 Y Y Y不相关。
-
C 1 X + C 2 Y ∼ N ( C 1 μ 1 + C 2 μ 2 , C 1 2 σ 1 2 + C 2 2 σ 2 2 + 2 C 1 C 2 σ 1 σ 2 ρ ) C_{1}X + C_{2}Ysim N(C_{1}mu_{1} + C_{2}mu_{2},C_{1}^{2}sigma_{1}^{2} + C_{2}^{2}sigma_{2}^{2} + 2C_{1}C_{2}sigma_{1}sigma_{2}rho) C1X+C2Y∼N(C1μ1+C2μ2,C12σ12+C22σ22+2C1C2σ1σ2ρ)
-
X { X} X关于 Y = y Y=y Y=y的条件分布为: N ( μ 1 + ρ σ 1 σ 2 ( y − μ 2 ) , σ 1 2 ( 1 − ρ 2 ) ) N(mu_{1} + rhofrac{sigma_{1}}{sigma_{2}}(y - mu_{2}),sigma_{1}^{2}(1 - rho^{2})) N(μ1+ρσ2σ1(y−μ2),σ12(1−ρ2))
-
Y Y Y关于 X = x X = x X=x的条件分布为: N ( μ 2 + ρ σ 2 σ 1 ( x − μ 1 ) , σ 2 2 ( 1 − ρ 2 ) ) N(mu_{2} + rhofrac{sigma_{2}}{sigma_{1}}(x - mu_{1}),sigma_{2}^{2}(1 - rho^{2})) N(μ2+ρσ1σ2(x−μ1),σ22(1−ρ2))
(4) 若
X
X
X与
Y
Y
Y独立,且分别服从
N
(
μ
1
,
σ
1
2
)
,
N
(
μ
1
,
σ
2
2
)
,
N(mu_{1},sigma_{1}^{2}),N(mu_{1},sigma_{2}^{2}),
N(μ1,σ12),N(μ1,σ22),
则:
(
X
,
Y
)
∼
N
(
μ
1
,
μ
2
,
σ
1
2
,
σ
2
2
,
0
)
,
left( X,Y right)sim N(mu_{1},mu_{2},sigma_{1}^{2},sigma_{2}^{2},0),
(X,Y)∼N(μ1,μ2,σ12,σ22,0),
C 1 X + C 2 Y ~ N ( C 1 μ 1 + C 2 μ 2 , C 1 2 σ 1 2 C 2 2 σ 2 2 ) . C_{1}X + C_{2}Ytilde{ }N(C_{1}mu_{1} + C_{2}mu_{2},C_{1}^{2}sigma_{1}^{2} C_{2}^{2}sigma_{2}^{2}). C1X+C2Y ~N(C1μ1+C2μ2,C12σ12C22σ22).
(5) 若 X X X与 Y Y Y相互独立, f ( x ) fleft( x right) f(x)和 g ( x ) gleft( x right) g(x)为连续函数, 则 f ( X ) fleft( X right) f(X)和 g ( Y ) g(Y) g(Y)也相互独立。
随机变量的数字特征
1.数学期望
离散型: P { X = x i } = p i , E ( X ) = ∑ i x i p i Pleft{ X = x_{i} right} = p_{i},E(X) = sum_{i}^{}{x_{i}p_{i}} P{X=xi}=pi,E(X)=∑ixipi;
连续型: X ∼ f ( x ) , E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x Xsim f(x),E(X) = int_{- infty}^{+ infty}{xf(x)dx} X∼f(x),E(X)=∫−∞+∞xf(x)dx
性质:
(1) E ( C ) = C , E [ E ( X ) ] = E ( X ) E(C) = C,Elbrack E(X)rbrack = E(X) E(C)=C,E[E(X)]=E(X)
(2) E ( C 1 X + C 2 Y ) = C 1 E ( X ) + C 2 E ( Y ) E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y) E(C1X+C2Y)=C1E(X)+C2E(Y)
(3) 若 X X X和 Y Y Y独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY) = E(X)E(Y) E(XY)=E(X)E(Y)
(4) [ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) leftlbrack E(XY) rightrbrack^{2} leq E(X^{2})E(Y^{2}) [E(XY)]2≤E(X2)E(Y2)
2.方差: D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 D(X) = Eleftlbrack X - E(X) rightrbrack^{2} = E(X^{2}) - leftlbrack E(X) rightrbrack^{2} D(X)=E[X−E(X)]2=E(X2)−[E(X)]2
3.标准差: D ( X ) sqrt{D(X)} D(X),
4.离散型: D ( X ) = ∑ i [ x i − E ( X ) ] 2 p i D(X) = sum_{i}^{}{leftlbrack x_{i} - E(X) rightrbrack^{2}p_{i}} D(X)=∑i[xi−E(X)]2pi
5.连续型: D ( X ) = ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x D(X) = {int_{- infty}^{+ infty}leftlbrack x - E(X) rightrbrack}^{2}f(x)dx D(X)=∫−∞+∞[x−E(X)]2f(x)dx
性质:
(1) D ( C ) = 0 , D [ E ( X ) ] = 0 , D [ D ( X ) ] = 0 D(C) = 0,Dlbrack E(X)rbrack = 0,Dlbrack D(X)rbrack = 0 D(C)=0,D[E(X)]=0,D[D(X)]=0
(2) X X X与 Y Y Y相互独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) D(X pm Y) = D(X) + D(Y) D(X±Y)=D(X)+D(Y)
(3) D ( C 1 X + C 2 ) = C 1 2 D ( X ) Dleft( C_{1}X + C_{2} right) = C_{1}^{2}Dleft( X right) D(C1X+C2)=C12D(X)
(4) 一般有 D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) = D ( X ) + D ( Y ) ± 2 ρ D ( X ) D ( Y ) D(X pm Y) = D(X) + D(Y) pm 2Cov(X,Y) = D(X) + D(Y) pm 2rhosqrt{D(X)}sqrt{D(Y)} D(X±Y)=D(X)+D(Y)±2Cov(X,Y)=D(X)+D(Y)±2ρD(X)D(Y)
(5) D ( X ) < E ( X − C ) 2 , C ≠ E ( X ) Dleft( X right) < Eleft( X - C right)^{2},C neq Eleft( X right) D(X)<E(X−C)2,C=E(X)
(6) D ( X ) = 0 ⇔ P { X = C } = 1 D(X) = 0 Leftrightarrow Pleft{ X = C right} = 1 D(X)=0⇔P{X=C}=1
6.随机变量函数的数学期望
(1) 对于函数 Y = g ( x ) Y = g(x) Y=g(x)
X X X为离散型: P { X = x i } = p i , E ( Y ) = ∑ i g ( x i ) p i P{ X = x_{i}} = p_{i},E(Y) = sum_{i}^{}{g(x_{i})p_{i}} P{X=xi}=pi,E(Y)=∑ig(xi)pi;
X X X为连续型: X ∼ f ( x ) , E ( Y ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x Xsim f(x),E(Y) = int_{- infty}^{+ infty}{g(x)f(x)dx} X∼f(x),E(Y)=∫−∞+∞g(x)f(x)dx
(2) Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y); ( X , Y ) ∼ P { X = x i , Y = y j } = p i j left( X,Y right)sim P{ X = x_{i},Y = y_{j}} = p_{{ij}} (X,Y)∼P{X=xi,Y=yj}=pij; E ( Z ) = ∑ i ∑ j g ( x i , y j ) p i j E(Z) = sum_{i}^{}{sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}} E(Z)=∑i∑jg(xi,yj)pij ( X , Y ) ∼ f ( x , y ) left( X,Y right)sim f(x,y) (X,Y)∼f(x,y); E ( Z ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E(Z) = int_{- infty}^{+ infty}{int_{- infty}^{+ infty}{g(x,y)f(x,y)dxdy}} E(Z)=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy
7.协方差
C o v ( X , Y ) = E [ ( X − E ( X ) ( Y − E ( Y ) ) ] Cov(X,Y) = Eleftlbrack (X - E(X)(Y - E(Y)) rightrbrack Cov(X,Y)=E[(X−E(X)(Y−E(Y))]
8.相关系数
ρ
X
Y
=
C
o
v
(
X
,
Y
)
D
(
X
)
D
(
Y
)
rho_{{XY}} = frac{Cov(X,Y)}{sqrt{D(X)}sqrt{D(Y)}}
ρXY=D(X)D(Y)Cov(X,Y),
k
k
k阶原点矩
E
(
X
k
)
E(X^{k})
E(Xk);
k
k
k阶中心矩
E
{
[
X
−
E
(
X
)
]
k
}
Eleft{ {lbrack X - E(X)rbrack}^{k} right}
E{[X−E(X)]k}
性质:
(1) C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y) = Cov(Y,X) Cov(X,Y)=Cov(Y,X)
(2) C o v ( a X , b Y ) = a b C o v ( Y , X ) Cov(aX,bY) = abCov(Y,X) Cov(aX,bY)=abCov(Y,X)
(3) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
(4) ∣ ρ ( X , Y ) ∣ ≤ 1 left| rholeft( X,Y right) right| leq 1 ∣ρ(X,Y)∣≤1
(5) ρ ( X , Y ) = 1 ⇔ P ( Y = a X + b ) = 1 rholeft( X,Y right) = 1 Leftrightarrow Pleft( Y = aX + b right) = 1 ρ(X,Y)=1⇔P(Y=aX+b)=1 ,其中 a > 0 a > 0 a>0
ρ
(
X
,
Y
)
=
−
1
⇔
P
(
Y
=
a
X
+
b
)
=
1
rholeft( X,Y right) = - 1 Leftrightarrow Pleft( Y = aX + b right) = 1
ρ(X,Y)=−1⇔P(Y=aX+b)=1
,其中
a
<
0
a < 0
a<0
9.重要公式与结论
(1) D ( X ) = E ( X 2 ) − E 2 ( X ) D(X) = E(X^{2}) - E^{2}(X) D(X)=E(X2)−E2(X)
(2) C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y) = E(XY) - E(X)E(Y) Cov(X,Y)=E(XY)−E(X)E(Y)
(3) ∣ ρ ( X , Y ) ∣ ≤ 1 , left| rholeft( X,Y right) right| leq 1, ∣ρ(X,Y)∣≤1,且 ρ ( X , Y ) = 1 ⇔ P ( Y = a X + b ) = 1 rholeft( X,Y right) = 1 Leftrightarrow Pleft( Y = aX + b right) = 1 ρ(X,Y)=1⇔P(Y=aX+b)=1,其中 a > 0 a > 0 a>0
ρ ( X , Y ) = − 1 ⇔ P ( Y = a X + b ) = 1 rholeft( X,Y right) = - 1 Leftrightarrow Pleft( Y = aX + b right) = 1 ρ(X,Y)=−1⇔P(Y=aX+b)=1,其中 a < 0 a < 0 a<0
(4) 下面5个条件互为充要条件:
ρ ( X , Y ) = 0 rho(X,Y) = 0 ρ(X,Y)=0 ⇔ C o v ( X , Y ) = 0 Leftrightarrow Cov(X,Y) = 0 ⇔Cov(X,Y)=0 ⇔ E ( X , Y ) = E ( X ) E ( Y ) Leftrightarrow E(X,Y) = E(X)E(Y) ⇔E(X,Y)=E(X)E(Y) ⇔ D ( X + Y ) = D ( X ) + D ( Y ) Leftrightarrow D(X + Y) = D(X) + D(Y) ⇔D(X+Y)=D(X)+D(Y) ⇔ D ( X − Y ) = D ( X ) + D ( Y ) Leftrightarrow D(X - Y) = D(X) + D(Y) ⇔D(X−Y)=D(X)+D(Y)
注: X X X与 Y Y Y独立为上述5个条件中任何一个成立的充分条件,但非必要条件。
数理统计的基本概念
1.基本概念
总体:研究对象的全体,它是一个随机变量,用 X X X表示。
个体:组成总体的每个基本元素。
简单随机样本:来自总体 X X X的 n n n个相互独立且与总体同分布的随机变量 X 1 , X 2 ⋯ , X n X_{1},X_{2}cdots,X_{n} X1,X2⋯,Xn,称为容量为 n n n的简单随机样本,简称样本。
统计量:设 X 1 , X 2 ⋯ , X n , X_{1},X_{2}cdots,X_{n}, X1,X2⋯,Xn,是来自总体 X X X的一个样本, g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}cdots,X_{n}) g(X1,X2⋯,Xn))是样本的连续函数,且 g ( ) g() g()中不含任何未知参数,则称 g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}cdots,X_{n}) g(X1,X2⋯,Xn)为统计量。
样本均值: X ‾ = 1 n ∑ i = 1 n X i overline{X} = frac{1}{n}sum_{i = 1}^{n}X_{i} X=n1∑i=1nXi
样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^{2} = frac{1}{n - 1}sum_{i = 1}^{n}{(X_{i} - overline{X})}^{2} S2=n−11∑i=1n(Xi−X)2
样本矩:样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_{k} = frac{1}{n}sum_{i = 1}^{n}X_{i}^{k},k = 1,2,cdots Ak=n1∑i=1nXik,k=1,2,⋯
样本 k k k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , ⋯ B_{k} = frac{1}{n}sum_{i = 1}^{n}{(X_{i} - overline{X})}^{k},k = 1,2,cdots Bk=n1∑i=1n(Xi−X)k,k=1,2,⋯
2.分布
χ 2 chi^{2} χ2分布: χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) chi^{2} = X_{1}^{2} + X_{2}^{2} + cdots + X_{n}^{2}simchi^{2}(n) χ2=X12+X22+⋯+Xn2∼χ2(n),其中 X 1 , X 2 ⋯ , X n , X_{1},X_{2}cdots,X_{n}, X1,X2⋯,Xn,相互独立,且同服从 N ( 0 , 1 ) N(0,1) N(0,1)
t t t分布: T = X Y / n ∼ t ( n ) T = frac{X}{sqrt{Y/n}}sim t(n) T=Y/nX∼t(n) ,其中 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , Xsim Nleft( 0,1 right),Ysimchi^{2}(n), X∼N(0,1),Y∼χ2(n),且 X X X, Y Y Y 相互独立。
F F F分布: F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F = frac{X/n_{1}}{Y/n_{2}}sim F(n_{1},n_{2}) F=Y/n2X/n1∼F(n1,n2),其中 X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) , Xsimchi^{2}left( n_{1} right),Ysimchi^{2}(n_{2}), X∼χ2(n1),Y∼χ2(n2),且 X X X, Y Y Y相互独立。
分位数:若 P ( X ≤ x α ) = α , P(X leq x_{alpha}) = alpha, P(X≤xα)=α,则称 x α x_{alpha} xα为 X X X的 α alpha α分位数
3.正态总体的常用样本分布
(1) 设 X 1 , X 2 ⋯ , X n X_{1},X_{2}cdots,X_{n} X1,X2⋯,Xn为来自正态总体 N ( μ , σ 2 ) N(mu,sigma^{2}) N(μ,σ2)的样本,
X ‾ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 , overline{X} = frac{1}{n}sum_{i = 1}^{n}X_{i},S^{2} = frac{1}{n - 1}sum_{i = 1}^{n}{{(X_{i} - overline{X})}^{2},} X=n1∑i=1nXi,S2=n−11∑i=1n(Xi−X)2,则:
-
X ‾ ∼ N ( μ , σ 2 n ) overline{X}sim Nleft( mu,frac{sigma^{2}}{n} right){ } X∼N(μ,nσ2) 或者 X ‾ − μ σ n ∼ N ( 0 , 1 ) frac{overline{X} - mu}{frac{sigma}{sqrt{n}}}sim N(0,1) nσX−μ∼N(0,1)
-
( n − 1 ) S 2 σ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) frac{(n - 1)S^{2}}{sigma^{2}} = frac{1}{sigma^{2}}sum_{i = 1}^{n}{{(X_{i} - overline{X})}^{2}simchi^{2}(n - 1)} σ2(n−1)S2=σ21∑i=1n(Xi−X)2∼χ2(n−1)
-
1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) frac{1}{sigma^{2}}sum_{i = 1}^{n}{{(X_{i} - mu)}^{2}simchi^{2}(n)} σ21∑i=1n(Xi−μ)2∼χ2(n)
4) X ‾ − μ S / n ∼ t ( n − 1 ) { }frac{overline{X} - mu}{S/sqrt{n}}sim t(n - 1) S/nX−μ∼t(n−1)
4.重要公式与结论
(1) 对于 χ 2 ∼ χ 2 ( n ) chi^{2}simchi^{2}(n) χ2∼χ2(n),有 E ( χ 2 ( n ) ) = n , D ( χ 2 ( n ) ) = 2 n ; E(chi^{2}(n)) = n,D(chi^{2}(n)) = 2n; E(χ2(n))=n,D(χ2(n))=2n;
(2) 对于 T ∼ t ( n ) Tsim t(n) T∼t(n),有 E ( T ) = 0 , D ( T ) = n n − 2 ( n > 2 ) E(T) = 0,D(T) = frac{n}{n - 2}(n > 2) E(T)=0,D(T)=n−2n(n>2);
(3) 对于 F ~ F ( m , n ) Ftilde{ }F(m,n) F ~F(m,n),有 1 F ∼ F ( n , m ) , F a / 2 ( m , n ) = 1 F 1 − a / 2 ( n , m ) ; frac{1}{F}sim F(n,m),F_{a/2}(m,n) = frac{1}{F_{1 - a/2}(n,m)}; F1∼F(n,m),Fa/2(m,n)=F1−a/2(n,m)1;
(4) 对于任意总体 X X X,有 E ( X ‾ ) = E ( X ) , E ( S 2 ) = D ( X ) , D ( X ‾ ) = D ( X ) n E(overline{X}) = E(X),E(S^{2}) = D(X),D(overline{X}) = frac{D(X)}{n} E(X)=E(X),E(S2)=D(X),D(X)=nD(X)
最后
以上就是热情月光为你收集整理的机器学习之概率论与数理统计的全部内容,希望文章能够帮你解决机器学习之概率论与数理统计所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复