我是靠谱客的博主 甜蜜洋葱,最近开发中收集的这篇文章主要介绍softmax loss 与cross-entropy loss的区别,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Technically no because "softmax loss" isn't really a correct term, and "cross-entropy loss" is. So cross-entropy loss is really the correct term to use when describing the function: 

The softmax classifier is a linear classifier that uses the cross-entropy loss function. In other words, the gradient of the above function tells a softmax classifier how exactly to update its weights using something like gradient descent.

So in short, they aren't the same. However, people use the term "softmax loss" when referring to "cross-entropy loss" and because you know what they mean, there's no reason to annoyingly correct them. Because they are used interchangeably, the two terms are effectively the same

softmax loss函数是指针对softmax分类器的损失函数,是一种泛指;可以使用mse也可以是cross-entropy loss函数或其他种类;交叉熵损失函数只统计正确的部分;而mse是统计错误的部分;

最后

以上就是甜蜜洋葱为你收集整理的softmax loss 与cross-entropy loss的区别的全部内容,希望文章能够帮你解决softmax loss 与cross-entropy loss的区别所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部