我是靠谱客的博主 笑点低山水,这篇文章主要介绍Pandas 中map, applymap and apply的区别,现在分享给大家,希望可以做个参考。

1.apply()

当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon']) In [117]: frame Out[117]: b d e Utah -0.029638 1.081563 1.280300 Ohio 0.647747 0.831136 -1.549481 Texas 0.513416 -0.884417 0.195343 Oregon -0.485454 -0.477388 -0.309548 In [118]: f = lambda x: x.max() - x.min() In [119]: frame.apply(f) Out[119]: b 1.133201 d 1.965980 e 2.829781 dtype: float64

但是因为大多数的列表统计方程 (比如 sum 和 mean)是DataFrame的函数,所以apply很多时候不是必须的

2.applymap()

如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
In [120]: format = lambda x: '%.2f' % x In [121]: frame.applymap(format) Out[121]: b d e Utah -0.03 1.08 1.28 Ohio 0.65 0.83 -1.55 Texas 0.51 -0.88 0.20 Oregon -0.49 -0.48 -0.31

3.map()

map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示

复制代码
1
2
3
4
5
6
7
8
9
10
11
In [122]: frame['e'].map(format) Out[122]: Utah 1.28 Ohio -1.55 Texas 0.20 Oregon -0.31 Name: e, dtype: object

总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作

最后

以上就是笑点低山水最近收集整理的关于Pandas 中map, applymap and apply的区别的全部内容,更多相关Pandas内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部