概述
数据集:(参见python实战教程)
训练数据:trainingDigits 2000多个.txt文件
测试数据:testDigits 约900个.txt文件
均为32*32大小
test_handWritting.py:
from numpy import *
import os
import knnOperator
import pdb
def img2vector(filename,d): #d=32
returnVector = zeros((1,d*d))
fr = open(filename)
for i in range(d):
linstr = fr.readline()
for j in range(d):
returnVector[0,i*d+j] = int(linstr[j])
return returnVector
def handwritingClassTest(filepath,d):
trainFilePath = filepath + 'trainingDigits\'
trainFileList = os.listdir(trainFilePath)
nTrain = len(trainFileList)
trainData = zeros((nTrain,d*d))
trainlabels = []
for i in range(nTrain):
trainFilei = trainFileList[i]
trainFileName = trainFilePath + trainFilei
vector = img2vector(trainFileName,d)
trainData[i,:] = vector
trainFileClass = trainFilei.split('_')[0]
trainlabels.append(trainFileClass)
testFilePath = filepath + 'testDigits\'
testFileList = os.listdir(testFilePath)
nTest = len(testFileList)
k = 4
count = 0
for j in range(nTest):
#pdb.set_trace()
testFilej = testFileList[j]
testFileName = testFilePath + testFilej
testSample = img2vector(testFileName,d)
test_label = knnOperator.knnOperator(testSample,trainData,trainlabels,k)
truth_label = testFilej.split('_')[0]
if (truth_label == test_label):
count += 1
rate = float(count) / float(nTest)
print rate
knnOperator函数参见: http://blog.csdn.net/u013593585/article/details/51284537
主实现:
import test_handWritting
filepath = 'E:\ZForWorks\MLPython\knn\digits\'
d = 32
handwritingClassTest(filepath,d)
准确率:98.3%
最后
以上就是和谐小虾米为你收集整理的k近邻算法识别手写数字Python实现的全部内容,希望文章能够帮你解决k近邻算法识别手写数字Python实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复