我是靠谱客的博主 独特嚓茶,最近开发中收集的这篇文章主要介绍特征选择(三)-K-L变换,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

上一讲说到,各个特征(各个分量)对分类来说,其重要性当然是不同的。
舍去不重要的分量,这就是降维

 

聚类变换认为重要的分量就是能让变换后类内距离小的分量

类内距离小,意味着抱团抱得紧。

 

但是,抱团抱得紧,真的就一定容易分类么?

如图1所示,根据聚类变换的原则,我们要留下方差小的分量,把方差大(波动大)的分量丢掉,所以两个椭圆都要向y轴投影,这样悲剧了,两个重叠在一起,根本分不开了。而另一种情况却可以这么做,把方差大的分量丢掉,于是向x轴投影,很顺利就能分开了。因此,聚类变换并不是每次都能成功的


图1

 

摧枯拉朽的K-L变换

K-L变换是理论上“最好”的变换:是均方误差(MSE,MeanSquare Error)意义下的最佳变换,它在数据压缩技术中占有重要地位。

 

聚类变换还有一个问题是,必须一类一类地处理,把每类分别变换,让它们各自抱团。

K-L变换要把所有的类别放在一起变换,希望通过这个一次性的变换,让它们分的足够开。

 

K-L变换认为:各类抱团紧不一定好区分。目标应该是怎么样让类间距离大,或者让不同类好区分。因此对应于2种K-L变换。

 

其一:最优描述的K-L变换(沿类间距离大的方向降维)

首先来看个二维二类的例子,如图2所示。


图2


如果使用聚类变换,方向是方差最小的方向,因此降维向方向投影,得到2类之间的距离即为2条红线之间的距离,但是这并不是相隔最远的投影方向。将椭圆投影到方向,得到2类之间的距离为2条绿线之间的距离。这个方向就是用自相关矩阵的统计平均得到的特征向量

设共有M个类别,各类出现的先验概率为


表示来自第i类的向量。则第i类集群的自相关矩阵为:

混合分布的自相关矩阵R是:

然后求出R的特征向量和特征值:

将特征值降序排列(注意与聚类变换区别

为了降到m维,取前m个特征向量,构成变换矩阵A

以上便完成了最优描述的K-L变换。

 

为什么K-L变换是均方误差(MSE,MeanSquare Error)意义下的最佳变换?

其中表示n维向量y的第j个分量,表示第个特征分量。

引入的误差


均方误差为


m+1开始的特征值都是最小的几个,所以均方误差得到最小。

 

以上方法称为最优描述的K-L变换,是沿类间距离大的方向降维,从而均方误差最佳

本质上说,最优描述的K-L变换扔掉了最不显著的特征,然而,显著的特征其实并不一定对分类有帮助。我们的目标还是要找出对分类作用大的特征,而不应该管这些特征本身的强弱。这就诞生了第2种的K-L变换方法。

 

其二:最优区分的K-L变换(混合白化后抽取特征)

针对上述问题,最优区分的K-L变换先把混合分布白化,再来根据特征值的分离程度进行排序。

 

最优区分的K-L变换步骤

首先还是混合分布的自相关矩阵R


然后求出R的特征向量和特征值:


以上是主轴变换,实际上是坐标旋转,之前已经介绍过。

令变换矩阵


则有


这个作用是白化R矩阵,这一步是坐标尺度变换,相当于把椭圆整形成圆,如图3所示。

 

图3


以二类混合分布问题为例。


分别求出二类的特征向量和特征值,有


二者的特征向量完全相同,唯一的据别在于其特征根,而且还负相关,即如果取降序排列时,则以升序排列。

为了获得最优区分,要使得两者的特征值足够不同。因此,需要舍弃特征值接近0.5的那些特征,而保留使大的那些特征,按这个原则选出了m个特征向量记作


则总的最优区分的K-L变换就是:




欢迎参与讨论并关注本博客微博以及知乎个人主页后续内容继续更新哦~

转载请您尊重作者的劳动,完整保留上述文字以及本文链接,谢谢您的支持!


最后

以上就是独特嚓茶为你收集整理的特征选择(三)-K-L变换的全部内容,希望文章能够帮你解决特征选择(三)-K-L变换所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部