我是靠谱客的博主 凶狠钢铁侠,最近开发中收集的这篇文章主要介绍hadoop详细笔记(十七) 将MapReduce程序提交到Yarn上运行1 windows上2 linux上,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

免费视频教程 https://www.51doit.com/ 或者联系博主微信 17710299606

1 windows上

System.setProperty("HADOOP_USER_NAME", "root");
Configuration conf = new Configuration();
// 设置访问的集群的位置
conf.set("fs.defaultFS", "hdfs://doit01:9000");
// 设置yarn的位置
 conf.set("mapreduce.framework.name", "yarn");
// yarn的resourcemanager的位置
conf.set("yarn.resourcemanager.hostname", "doit01");
// 设置MapReduce程序运行在windows上的跨平台参数
conf.set("mapreduce.app-submission.cross-platform","true");
job.setJar() ;
package com._51doit.yarn.wc;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @Auther: 多易教育-行哥
 * @Date: 2020/7/10
 * @Description:
 * 1 运行模式  默认是local  设置运行在yarn上
 * 2 yarn的位置  resourcemanage
 * 3 读取数据  HDFS
 * 4 用户名
 * 5 跨平台参数
 *
 */
public class WordCountDriver {
    public static void main(String[] args) throws Exception {
        // 1 配置对象
        System.setProperty("HADOOP_USER_NAME", "root");
        Configuration conf = new Configuration();
        // 设置访问文件系统
        conf.set("fs.defaultFS", "hdfs://linux01:9000");
        // 设置MR程序运行模式  yarn
        conf.set("mapreduce.framework.name", "yarn");
        // yarn的resourcemanager的位置
        conf.set("yarn.resourcemanager.hostname", "linux01");
        // 设置MapReduce程序运行在windows上的跨平台参数
        conf.set("mapreduce.app-submission.cross-platform","true");
        // 2 创建任务对象
        Job job = Job.getInstance(conf, "wc");
       job.setJar("C:\Users\ThinkPad\Desktop\demo.jar");
        job.setJarByClass(WordCountDriver.class);
        // 2.1 设置 map和reduce任务类
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        //2.2 设置map和reduce 的输出KV
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 2.3 设置reduce的个数  默认1
        job.setNumReduceTasks(2);
        // 2.3 设置输入和输出路径
        FileInputFormat.setInputPaths(job,new Path("/data/wc/"));
        FileOutputFormat.setOutputPath(job,new Path("/data/wc_res"));
        // 3 提交任务  等待程序执行完毕   返回值是否成功
        boolean b = job.waitForCompletion(true);
        System.exit(b?0:-1);
    }
}

打包程序到指定的目录中

2 linux上

打包程序,将jar包上传到Linux操作系统

package com._51doit.yarn.wc;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @Auther: 多易教育-行哥
 * @Date: 2020/7/10
 * @Description:
 * 1 运行模式  默认是local  设置运行在yarn上
 * 2 yarn的位置  resourcemanage
 * 3 读取数据  HDFS
 * 4 用户名
 * 5 跨平台参数
 *
 */
public class WordCountDriver {
    public static void main(String[] args) throws Exception {
        // 1 配置对象
       // System.setProperty("HADOOP_USER_NAME", "root");
        Configuration conf = new Configuration();
        // 设置访问文件系统
        //conf.set("fs.defaultFS", "hdfs://linux01:9000");
        // 设置MR程序运行模式  yarn
        conf.set("mapreduce.framework.name", "yarn");
        // yarn的resourcemanager的位置
        conf.set("yarn.resourcemanager.hostname", "linux01");
        // 设置MapReduce程序运行在windows上的跨平台参数
        // conf.set("mapreduce.app-submission.cross-platform","true");
        // 2 创建任务对象
        Job job = Job.getInstance(conf, "wc");
       // job.setJar("C:\Users\ThinkPad\Desktop\demo.jar");
        job.setJarByClass(WordCountDriver.class);
        // 2.1 设置 map和reduce任务类
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        //2.2 设置map和reduce 的输出KV
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 2.3 设置reduce的个数  默认1
        job.setNumReduceTasks(2);
        // 2.3 设置输入和输出路径
        FileInputFormat.setInputPaths(job,new Path("/data/wc/"));
        FileOutputFormat.setOutputPath(job,new Path("/data/wc_res"));
        // 3 提交任务  等待程序执行完毕   返回值是否成功
        boolean b = job.waitForCompletion(true);
        System.exit(b?0:-1);
    }
}

在配置了HADOOP环境变量的机器上执行命令 运行MR程序

hadoop  jar /demo.jar com._51doit.yarn.wc.WordCountDriver

20/07/14 14:41:46 INFO client.RMProxy: Connecting to ResourceManager at linux01/192.168.133.201:8032
20/07/14 14:41:47 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
20/07/14 14:41:47 INFO input.FileInputFormat: Total input files to process : 1
20/07/14 14:41:48 INFO mapreduce.JobSubmitter: number of splits:1
20/07/14 14:41:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1594624386350_0003  非本地模式
20/07/14 14:41:48 INFO impl.YarnClientImpl: Submitted application application_1594624386350_0003
20/07/14 14:41:48 INFO mapreduce.Job: The url to track the job: http://linux01:8088/proxy/application_1594624386350_0003/
20/07/14 14:41:48 INFO mapreduce.Job: Running job: job_1594624386350_0003

在yarn监控页面可以查看到任务

 

 

最后

以上就是凶狠钢铁侠为你收集整理的hadoop详细笔记(十七) 将MapReduce程序提交到Yarn上运行1 windows上2 linux上的全部内容,希望文章能够帮你解决hadoop详细笔记(十七) 将MapReduce程序提交到Yarn上运行1 windows上2 linux上所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部