我是
靠谱客的博主
可爱鲜花,最近开发中收集的这篇文章主要介绍
hbase MapReduce程序样例入门,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
1、先看一个标准的hbase作为数据读取源和输出源的样例:
1
2
3
4
5
6
7
8
| Configuration conf = HBaseConfiguration.create();
Job job = new Job(conf, "job name ");
job.setJarByClass(test.class);
Scan scan = new Scan();
TableMapReduceUtil.initTableMapperJob(inputTable, scan, mapper.class,
Writable.class, Writable.class, job);
TableMapReduceUtil.initTableReducerJob(outputTable, reducer.class, job);
job.waitForCompletion(true); |
首先创建配置信息和作业对象,设置作业的类。这些和正常的mapreduce一样,唯一不一样的就是数据源的说明部分,TableMapReduceUtil的initTableMapperJob和initTableReducerJob方法来实现。
用如上代码:
数据输入源是hbase的inputTable表,执行mapper.class进行map过程,输出的key/value类型是ImmutableBytesWritable和Put类型,最后一个参数是作业对象。需要指出的是需要声明一个扫描读入对象scan,进行表扫描读取数据用,其中scan可以配置参数,这里为了例子简单不再详述。
数据输出目标是hbase的outputTable表,输出执行的reduce过程是reducer.class类,操作的作业目标是job。与map比缺少输出类型的标注,因为他们不是必要的,看过源代码就知道mapreduce的TableRecordWriter中write(key,value)方法中,key值是没有用到的。value只能是Put或者Delete两种类型,write方法会自行判断并不用用户指明。
接下来就是mapper类:
1
2
3
4
5
6
7
8
9
10
11
| public class mapper extends
TableMapper<KEYOUT, VALUEOUT> {
public void map(Writable key, Writable value, Context context)
throws IOException, InterruptedException {
//mapper逻辑
context.write(key, value);
}
}
} |
继承的是hbase中提供的TableMapper类,其实这个类也是继承的MapReduce类。后边跟的两个泛型参数指定类型是mapper输出的数据类型,该类型必须继承自Writable类,例如可能用到的put和delete就可以。需要注意的是要和initTableMapperJob方法指定的数据类型一直。该过程会自动从指定hbase表内一行一行读取数据进行处理。
然后reducer类:
1
2
3
4
5
6
7
8
| public class countUniteRedcuer extends
TableReducer<KEYIN, VALUEIN, KEYOUT> {
public void reduce(Text key, Iterable<VALUEIN> values, Context context)
throws IOException, InterruptedException {
//reducer逻辑
context.write(null, put or delete);
}
} |
reducer继承的是TableReducer类。后边指定三个泛型参数,前两个必须对应map过程的输出key/value类型,第三个必须是put或者delete。write的时候可以把key写null,它是不必要的。这样reducer输出的数据会自动插入outputTable指定的表内。
2、有时候我们需要数据源是hdfs的文本,输出对象是hbase。这时候变化也很简单:
1
2
3
4
5
6
7
8
9
10
11
| Configuration conf = HBaseConfiguration.create();
Job job = new Job(conf, "job name ");
job.setJarByClass(test.class);
job.setMapperClass(mapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
FileInputFormat.setInputPaths(job, path);
TableMapReduceUtil.initTableReducerJob(tableName,
reducer.class, job); |
你会发现只需要像平常的mapreduce的作业声明过程一样,指定mapper的执行类和输出key/value类型,指定FileInputFormat.setInputPaths的数据源路径,输出声明不变。便完成了从hdfs文本读取数据输出到hbase的命令声明过程。 mapper和reducer如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| public class mapper extends Mapper<LongWritable,Writable,Writable,Writable> {
public void map(LongWritable key, Text line, Context context) {
//mapper逻辑
context.write(k, one);
}
}
public class redcuer extends
TableReducer<KEYIN, VALUEIN, KEYOUT> {
public void reduce(Writable key, Iterable<Writable> values, Context context)
throws IOException, InterruptedException {
//reducer逻辑
context.write(null, put or delete);
}
} |
mapper还依旧继承原来的MapReduce类中的Mapper即可。同样注意这前后数据类型的key/value一直性。
3、最后就是从hbase中的表作为数据源读取,hdfs作为数据输出,简单的如下:
1
2
3
4
5
6
7
8
9
10
| Configuration conf = HBaseConfiguration.create();
Job job = new Job(conf, "job name ");
job.setJarByClass(test.class);
Scan scan = new Scan();
TableMapReduceUtil.initTableMapperJob(inputTable, scan, mapper.class,
Writable.class, Writable.class, job);
job.setOutputKeyClass(Writable.class);
job.setOutputValueClass(Writable.class);
FileOutputFormat.setOutputPath(job, Path);
job.waitForCompletion(true); |
mapper和reducer简单如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| public class mapper extends
TableMapper<KEYOUT, VALUEOUT>{
public void map(Writable key, Writable value, Context context)
throws IOException, InterruptedException {
//mapper逻辑
context.write(key, value);
}
}
}
public class reducer extends
Reducer<Writable,Writable,Writable,Writable>
{
public void reducer(Writable key, Writable value, Context context)
throws IOException, InterruptedException {
//reducer逻辑
context.write(key, value);
}
}
} |
最后说一下TableMapper和TableReducer的本质,其实这俩类就是为了简化一下书写代码,因为传入的4个泛型参数里都会有固定的参数类型,所以是Mapper和Reducer的简化版本,本质他们没有任何区别。源码如下:
1
2
3
4
5
6
7
| public abstract class TableMapper<KEYOUT, VALUEOUT>
extends Mapper<ImmutableBytesWritable, Result, KEYOUT, VALUEOUT> {
}
public abstract class TableReducer<KEYIN, VALUEIN, KEYOUT>
extends Reducer<KEYIN, VALUEIN, KEYOUT, Writable> {
} |
好了,可以去写第一个wordcount的hbase mapreduce程序了。
自:http://blog.pureisle.net/archives/1938.html
最后
以上就是可爱鲜花为你收集整理的hbase MapReduce程序样例入门的全部内容,希望文章能够帮你解决hbase MapReduce程序样例入门所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复