概述
图片复用
Android Bitmap inBitmap 可以复用图片,inBitmap指向缓存图片,c直接返回了inBitmap,配合内存缓存。
源码:http://androidxref.com/5.1.0_r1/xref/frameworks/base/core/jni/android/graphics/BitmapFactory.cpp
#define LOG_TAG "BitmapFactory"
#include "BitmapFactory.h"
#include "NinePatchPeeker.h"
#include "SkFrontBufferedStream.h"
#include "SkImageDecoder.h"
#include "SkMath.h"
#include "SkPixelRef.h"
#include "SkStream.h"
#include "SkTemplates.h"
#include "SkUtils.h"
#include "CreateJavaOutputStreamAdaptor.h"
#include "AutoDecodeCancel.h"
#include "Utils.h"
#include "JNIHelp.h"
#include "GraphicsJNI.h"
#include <android_runtime/AndroidRuntime.h>
#include <androidfw/Asset.h>
#include <androidfw/ResourceTypes.h>
#include <cutils/compiler.h>
#include <netinet/in.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/stat.h>
jfieldID gOptions_justBoundsFieldID;
jfieldID gOptions_sampleSizeFieldID;
jfieldID gOptions_configFieldID;
jfieldID gOptions_premultipliedFieldID;
jfieldID gOptions_mutableFieldID;
jfieldID gOptions_ditherFieldID;
jfieldID gOptions_preferQualityOverSpeedFieldID;
jfieldID gOptions_scaledFieldID;
jfieldID gOptions_densityFieldID;
jfieldID gOptions_screenDensityFieldID;
jfieldID gOptions_targetDensityFieldID;
jfieldID gOptions_widthFieldID;
jfieldID gOptions_heightFieldID;
jfieldID gOptions_mimeFieldID;
jfieldID gOptions_mCancelID;
jfieldID gOptions_bitmapFieldID;
jfieldID gBitmap_nativeBitmapFieldID;
jfieldID gBitmap_ninePatchInsetsFieldID;
jclass gInsetStruct_class;
jmethodID gInsetStruct_constructorMethodID;
using namespace android;
static inline int32_t validOrNeg1(bool isValid, int32_t value) {
//
return isValid ? value : -1;
SkASSERT((int)isValid == 0 || (int)isValid == 1);
return ((int32_t)isValid - 1) | value;
}
jstring getMimeTypeString(JNIEnv* env, SkImageDecoder::Format format) {
static const struct {
SkImageDecoder::Format fFormat;
const char*
fMimeType;
} gMimeTypes[] = {
{ SkImageDecoder::kBMP_Format,
"image/bmp" },
{ SkImageDecoder::kGIF_Format,
"image/gif" },
{ SkImageDecoder::kICO_Format,
"image/x-ico" },
{ SkImageDecoder::kJPEG_Format, "image/jpeg" },
{ SkImageDecoder::kPNG_Format,
"image/png" },
{ SkImageDecoder::kWEBP_Format, "image/webp" },
{ SkImageDecoder::kWBMP_Format, "image/vnd.wap.wbmp" }
};
const char* cstr = NULL;
for (size_t i = 0; i < SK_ARRAY_COUNT(gMimeTypes); i++) {
if (gMimeTypes[i].fFormat == format) {
cstr = gMimeTypes[i].fMimeType;
break;
}
}
jstring jstr = NULL;
if (cstr != NULL) {
// NOTE: Caller should env->ExceptionCheck() for OOM
// (can't check for NULL as it's a valid return value)
jstr = env->NewStringUTF(cstr);
}
return jstr;
}
static bool optionsJustBounds(JNIEnv* env, jobject options) {
return options != NULL && env->GetBooleanField(options, gOptions_justBoundsFieldID);
}
static void scaleDivRange(int32_t* divs, int count, float scale, int maxValue) {
for (int i = 0; i < count; i++) {
divs[i] = int32_t(divs[i] * scale + 0.5f);
if (i > 0 && divs[i] == divs[i - 1]) {
divs[i]++; // avoid collisions
}
}
if (CC_UNLIKELY(divs[count - 1] > maxValue)) {
// if the collision avoidance above put some divs outside the bounds of the bitmap,
// slide outer stretchable divs inward to stay within bounds
int highestAvailable = maxValue;
for (int i = count - 1; i >= 0; i--) {
divs[i] = highestAvailable;
if (i > 0 && divs[i] <= divs[i-1]){
// keep shifting
highestAvailable = divs[i] - 1;
} else {
break;
}
}
}
}
static void scaleNinePatchChunk(android::Res_png_9patch* chunk, float scale,
int scaledWidth, int scaledHeight) {
chunk->paddingLeft = int(chunk->paddingLeft * scale + 0.5f);
chunk->paddingTop = int(chunk->paddingTop * scale + 0.5f);
chunk->paddingRight = int(chunk->paddingRight * scale + 0.5f);
chunk->paddingBottom = int(chunk->paddingBottom * scale + 0.5f);
scaleDivRange(chunk->getXDivs(), chunk->numXDivs, scale, scaledWidth);
scaleDivRange(chunk->getYDivs(), chunk->numYDivs, scale, scaledHeight);
}
static SkColorType colorTypeForScaledOutput(SkColorType colorType) {
switch (colorType) {
case kUnknown_SkColorType:
case kIndex_8_SkColorType:
return kN32_SkColorType;
default:
break;
}
return colorType;
}
class ScaleCheckingAllocator : public SkBitmap::HeapAllocator {
public:
ScaleCheckingAllocator(float scale, int size)
: mScale(scale), mSize(size) {
}
virtual bool allocPixelRef(SkBitmap* bitmap, SkColorTable* ctable) {
// accounts for scale in final allocation, using eventual size and config
const int bytesPerPixel = SkColorTypeBytesPerPixel(
colorTypeForScaledOutput(bitmap->colorType()));
const int requestedSize = bytesPerPixel *
int(bitmap->width() * mScale + 0.5f) *
int(bitmap->height() * mScale + 0.5f);
if (requestedSize > mSize) {
ALOGW("bitmap for alloc reuse (%d bytes) can't fit scaled bitmap (%d bytes)",
mSize, requestedSize);
return false;
}
return SkBitmap::HeapAllocator::allocPixelRef(bitmap, ctable);
}
private:
const float mScale;
const int mSize;
};
class RecyclingPixelAllocator : public SkBitmap::Allocator {
public:
RecyclingPixelAllocator(SkPixelRef* pixelRef, unsigned int size)
: mPixelRef(pixelRef), mSize(size) {
SkSafeRef(mPixelRef);
}
~RecyclingPixelAllocator() {
SkSafeUnref(mPixelRef);
}
virtual bool allocPixelRef(SkBitmap* bitmap, SkColorTable* ctable) {
const SkImageInfo& info = bitmap->info();
if (info.fColorType == kUnknown_SkColorType) {
ALOGW("unable to reuse a bitmap as the target has an unknown bitmap configuration");
return false;
}
const int64_t size64 = info.getSafeSize64(bitmap->rowBytes());
if (!sk_64_isS32(size64)) {
ALOGW("bitmap is too large");
return false;
}
const size_t size = sk_64_asS32(size64);
if (size > mSize) {
ALOGW("bitmap marked for reuse (%d bytes) can't fit new bitmap (%d bytes)",
mSize, size);
return false;
}
// Create a new pixelref with the new ctable that wraps the previous pixelref
SkPixelRef* pr = new AndroidPixelRef(*static_cast<AndroidPixelRef*>(mPixelRef),
info, bitmap->rowBytes(), ctable);
bitmap->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
// HeapAllocator/JavaPixelAllocator behaves this way too
bitmap->lockPixels();
return true;
}
private:
SkPixelRef* const mPixelRef;
const unsigned int mSize;
};
static jobject doDecode(JNIEnv* env, SkStreamRewindable* stream, jobject padding, jobject options) {
int sampleSize = 1;
SkImageDecoder::Mode decodeMode = SkImageDecoder::kDecodePixels_Mode;
SkColorType prefColorType = kN32_SkColorType;
bool doDither = true;
bool isMutable = false;
float scale = 1.0f;
bool preferQualityOverSpeed = false;
bool requireUnpremultiplied = false;
jobject javaBitmap = NULL;
if (options != NULL) {
sampleSize = env->GetIntField(options, gOptions_sampleSizeFieldID);
if (optionsJustBounds(env, options)) {
decodeMode = SkImageDecoder::kDecodeBounds_Mode;
}
// initialize these, in case we fail later on
env->SetIntField(options, gOptions_widthFieldID, -1);
env->SetIntField(options, gOptions_heightFieldID, -1);
env->SetObjectField(options, gOptions_mimeFieldID, 0);
jobject jconfig = env->GetObjectField(options, gOptions_configFieldID);
prefColorType = GraphicsJNI::getNativeBitmapColorType(env, jconfig);
isMutable = env->GetBooleanField(options, gOptions_mutableFieldID);
doDither = env->GetBooleanField(options, gOptions_ditherFieldID);
preferQualityOverSpeed = env->GetBooleanField(options,
gOptions_preferQualityOverSpeedFieldID);
requireUnpremultiplied = !env->GetBooleanField(options, gOptions_premultipliedFieldID);
javaBitmap = env->GetObjectField(options, gOptions_bitmapFieldID);
if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
const int density = env->GetIntField(options, gOptions_densityFieldID);
const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
if (density != 0 && targetDensity != 0 && density != screenDensity) {
scale = (float) targetDensity / density;
}
}
}
const bool willScale = scale != 1.0f;
SkImageDecoder* decoder = SkImageDecoder::Factory(stream);
if (decoder == NULL) {
return nullObjectReturn("SkImageDecoder::Factory returned null");
}
decoder->setSampleSize(sampleSize);
decoder->setDitherImage(doDither);
decoder->setPreferQualityOverSpeed(preferQualityOverSpeed);
decoder->setRequireUnpremultipliedColors(requireUnpremultiplied);
SkBitmap* outputBitmap = NULL;
unsigned int existingBufferSize = 0;
if (javaBitmap != NULL) {
outputBitmap = (SkBitmap*) env->GetLongField(javaBitmap, gBitmap_nativeBitmapFieldID);
if (outputBitmap->isImmutable()) {
ALOGW("Unable to reuse an immutable bitmap as an image decoder target.");
javaBitmap = NULL;
outputBitmap = NULL;
} else {
existingBufferSize = GraphicsJNI::getBitmapAllocationByteCount(env, javaBitmap);
}
}
SkAutoTDelete<SkBitmap> adb(outputBitmap == NULL ? new SkBitmap : NULL);
if (outputBitmap == NULL) outputBitmap = adb.get();
NinePatchPeeker peeker(decoder);
decoder->setPeeker(&peeker);
JavaPixelAllocator javaAllocator(env);
RecyclingPixelAllocator recyclingAllocator(outputBitmap->pixelRef(), existingBufferSize);
ScaleCheckingAllocator scaleCheckingAllocator(scale, existingBufferSize);
SkBitmap::Allocator* outputAllocator = (javaBitmap != NULL) ?
(SkBitmap::Allocator*)&recyclingAllocator : (SkBitmap::Allocator*)&javaAllocator;
if (decodeMode != SkImageDecoder::kDecodeBounds_Mode) {
if (!willScale) {
// If the java allocator is being used to allocate the pixel memory, the decoder
// need not write zeroes, since the memory is initialized to 0.
decoder->setSkipWritingZeroes(outputAllocator == &javaAllocator);
decoder->setAllocator(outputAllocator);
} else if (javaBitmap != NULL) {
// check for eventual scaled bounds at allocation time, so we don't decode the bitmap
// only to find the scaled result too large to fit in the allocation
decoder->setAllocator(&scaleCheckingAllocator);
}
}
// Only setup the decoder to be deleted after its stack-based, refcounted
// components (allocators, peekers, etc) are declared. This prevents RefCnt
// asserts from firing due to the order objects are deleted from the stack.
SkAutoTDelete<SkImageDecoder> add(decoder);
AutoDecoderCancel adc(options, decoder);
// To fix the race condition in case "requestCancelDecode"
// happens earlier than AutoDecoderCancel object is added
// to the gAutoDecoderCancelMutex linked list.
if (options != NULL && env->GetBooleanField(options, gOptions_mCancelID)) {
return nullObjectReturn("gOptions_mCancelID");
}
SkBitmap decodingBitmap;
if (decoder->decode(stream, &decodingBitmap, prefColorType, decodeMode)
!= SkImageDecoder::kSuccess) {
return nullObjectReturn("decoder->decode returned false");
}
int scaledWidth = decodingBitmap.width();
int scaledHeight = decodingBitmap.height();
if (willScale && decodeMode != SkImageDecoder::kDecodeBounds_Mode) {
scaledWidth = int(scaledWidth * scale + 0.5f);
scaledHeight = int(scaledHeight * scale + 0.5f);
}
// update options (if any)
if (options != NULL) {
jstring mimeType = getMimeTypeString(env, decoder->getFormat());
if (env->ExceptionCheck()) {
return nullObjectReturn("OOM in getMimeTypeString()");
}
env->SetIntField(options, gOptions_widthFieldID, scaledWidth);
env->SetIntField(options, gOptions_heightFieldID, scaledHeight);
env->SetObjectField(options, gOptions_mimeFieldID, mimeType);
}
// if we're in justBounds mode, return now (skip the java bitmap)
if (decodeMode == SkImageDecoder::kDecodeBounds_Mode) {
return NULL;
}
jbyteArray ninePatchChunk = NULL;
if (peeker.mPatch != NULL) {
if (willScale) {
scaleNinePatchChunk(peeker.mPatch, scale, scaledWidth, scaledHeight);
}
size_t ninePatchArraySize = peeker.mPatch->serializedSize();
ninePatchChunk = env->NewByteArray(ninePatchArraySize);
if (ninePatchChunk == NULL) {
return nullObjectReturn("ninePatchChunk == null");
}
jbyte* array = (jbyte*) env->GetPrimitiveArrayCritical(ninePatchChunk, NULL);
if (array == NULL) {
return nullObjectReturn("primitive array == null");
}
memcpy(array, peeker.mPatch, peeker.mPatchSize);
env->ReleasePrimitiveArrayCritical(ninePatchChunk, array, 0);
}
jobject ninePatchInsets = NULL;
if (peeker.mHasInsets) {
ninePatchInsets = env->NewObject(gInsetStruct_class, gInsetStruct_constructorMethodID,
peeker.mOpticalInsets[0], peeker.mOpticalInsets[1], peeker.mOpticalInsets[2], peeker.mOpticalInsets[3],
peeker.mOutlineInsets[0], peeker.mOutlineInsets[1], peeker.mOutlineInsets[2], peeker.mOutlineInsets[3],
peeker.mOutlineRadius, peeker.mOutlineAlpha, scale);
if (ninePatchInsets == NULL) {
return nullObjectReturn("nine patch insets == null");
}
if (javaBitmap != NULL) {
env->SetObjectField(javaBitmap, gBitmap_ninePatchInsetsFieldID, ninePatchInsets);
}
}
if (willScale) {
// This is weird so let me explain: we could use the scale parameter
// directly, but for historical reasons this is how the corresponding
// Dalvik code has always behaved. We simply recreate the behavior here.
// The result is slightly different from simply using scale because of
// the 0.5f rounding bias applied when computing the target image size
const float sx = scaledWidth / float(decodingBitmap.width());
const float sy = scaledHeight / float(decodingBitmap.height());
// TODO: avoid copying when scaled size equals decodingBitmap size
SkColorType colorType = colorTypeForScaledOutput(decodingBitmap.colorType());
// FIXME: If the alphaType is kUnpremul and the image has alpha, the
// colors may not be correct, since Skia does not yet support drawing
// to/from unpremultiplied bitmaps.
outputBitmap->setInfo(SkImageInfo::Make(scaledWidth, scaledHeight,
colorType, decodingBitmap.alphaType()));
if (!outputBitmap->allocPixels(outputAllocator, NULL)) {
return nullObjectReturn("allocation failed for scaled bitmap");
}
// If outputBitmap's pixels are newly allocated by Java, there is no need
// to erase to 0, since the pixels were initialized to 0.
if (outputAllocator != &javaAllocator) {
outputBitmap->eraseColor(0);
}
SkPaint paint;
paint.setFilterLevel(SkPaint::kLow_FilterLevel);
SkCanvas canvas(*outputBitmap);
canvas.scale(sx, sy);
canvas.drawBitmap(decodingBitmap, 0.0f, 0.0f, &paint);
} else {
outputBitmap->swap(decodingBitmap);
}
if (padding) {
if (peeker.mPatch != NULL) {
GraphicsJNI::set_jrect(env, padding,
peeker.mPatch->paddingLeft, peeker.mPatch->paddingTop,
peeker.mPatch->paddingRight, peeker.mPatch->paddingBottom);
} else {
GraphicsJNI::set_jrect(env, padding, -1, -1, -1, -1);
}
}
// if we get here, we're in kDecodePixels_Mode and will therefore
// already have a pixelref installed.
if (outputBitmap->pixelRef() == NULL) {
return nullObjectReturn("Got null SkPixelRef");
}
if (!isMutable && javaBitmap == NULL) {
// promise we will never change our pixels (great for sharing and pictures)
outputBitmap->setImmutable();
}
// detach bitmap from its autodeleter, since we want to own it now
adb.detach();
if (javaBitmap != NULL) {
bool isPremultiplied = !requireUnpremultiplied;
GraphicsJNI::reinitBitmap(env, javaBitmap, outputBitmap, isPremultiplied);
outputBitmap->notifyPixelsChanged();
// If a java bitmap was passed in for reuse, pass it back
return javaBitmap;
}
int bitmapCreateFlags = 0x0;
if (isMutable) bitmapCreateFlags |= GraphicsJNI::kBitmapCreateFlag_Mutable;
if (!requireUnpremultiplied) bitmapCreateFlags |= GraphicsJNI::kBitmapCreateFlag_Premultiplied;
// now create the java bitmap
return GraphicsJNI::createBitmap(env, outputBitmap, javaAllocator.getStorageObj(),
bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
}
// Need to buffer enough input to be able to rewind as much as might be read by a decoder
// trying to determine the stream's format. Currently the most is 64, read by
// SkImageDecoder_libwebp.
// FIXME: Get this number from SkImageDecoder
#define BYTES_TO_BUFFER 64
static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
jobject padding, jobject options) {
jobject bitmap = NULL;
SkAutoTUnref<SkStream> stream(CreateJavaInputStreamAdaptor(env, is, storage));
if (stream.get()) {
SkAutoTUnref<SkStreamRewindable> bufferedStream(
SkFrontBufferedStream::Create(stream, BYTES_TO_BUFFER));
SkASSERT(bufferedStream.get() != NULL);
bitmap = doDecode(env, bufferedStream, padding, options);
}
return bitmap;
}
static jobject nativeDecodeFileDescriptor(JNIEnv* env, jobject clazz, jobject fileDescriptor,
jobject padding, jobject bitmapFactoryOptions) {
NPE_CHECK_RETURN_ZERO(env, fileDescriptor);
int descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor);
struct stat fdStat;
if (fstat(descriptor, &fdStat) == -1) {
doThrowIOE(env, "broken file descriptor");
return nullObjectReturn("fstat return -1");
}
// Restore the descriptor's offset on exiting this function. Even though
// we dup the descriptor, both the original and dup refer to the same open
// file description and changes to the file offset in one impact the other.
AutoFDSeek autoRestore(descriptor);
// Duplicate the descriptor here to prevent leaking memory. A leak occurs
// if we only close the file descriptor and not the file object it is used to
// create.
If we don't explicitly clean up the file (which in turn closes the
// descriptor) the buffers allocated internally by fseek will be leaked.
int dupDescriptor = dup(descriptor);
FILE* file = fdopen(dupDescriptor, "r");
if (file == NULL) {
// cleanup the duplicated descriptor since it will not be closed when the
// file is cleaned up (fclose).
close(dupDescriptor);
return nullObjectReturn("Could not open file");
}
SkAutoTUnref<SkFILEStream> fileStream(new SkFILEStream(file,
SkFILEStream::kCallerPasses_Ownership));
// Use a buffered stream. Although an SkFILEStream can be rewound, this
// ensures that SkImageDecoder::Factory never rewinds beyond the
// current position of the file descriptor.
SkAutoTUnref<SkStreamRewindable> stream(SkFrontBufferedStream::Create(fileStream,
BYTES_TO_BUFFER));
return doDecode(env, stream, padding, bitmapFactoryOptions);
}
static jobject nativeDecodeAsset(JNIEnv* env, jobject clazz, jlong native_asset,
jobject padding, jobject options) {
Asset* asset = reinterpret_cast<Asset*>(native_asset);
// since we know we'll be done with the asset when we return, we can
// just use a simple wrapper
SkAutoTUnref<SkStreamRewindable> stream(new AssetStreamAdaptor(asset,
AssetStreamAdaptor::kNo_OwnAsset, AssetStreamAdaptor::kNo_HasMemoryBase));
return doDecode(env, stream, padding, options);
}
static jobject nativeDecodeByteArray(JNIEnv* env, jobject, jbyteArray byteArray,
jint offset, jint length, jobject options) {
AutoJavaByteArray ar(env, byteArray);
SkMemoryStream* stream = new SkMemoryStream(ar.ptr() + offset, length, false);
SkAutoUnref aur(stream);
return doDecode(env, stream, NULL, options);
}
static void nativeRequestCancel(JNIEnv*, jobject joptions) {
(void)AutoDecoderCancel::RequestCancel(joptions);
}
static jboolean nativeIsSeekable(JNIEnv* env, jobject, jobject fileDescriptor) {
jint descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor);
return ::lseek64(descriptor, 0, SEEK_CUR) != -1 ? JNI_TRUE : JNI_FALSE;
}
///
static JNINativeMethod gMethods[] = {
{
"nativeDecodeStream",
"(Ljava/io/InputStream;[BLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
(void*)nativeDecodeStream
},
{
"nativeDecodeFileDescriptor",
"(Ljava/io/FileDescriptor;Landroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
(void*)nativeDecodeFileDescriptor
},
{
"nativeDecodeAsset",
"(JLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
(void*)nativeDecodeAsset
},
{
"nativeDecodeByteArray",
"([BIILandroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
(void*)nativeDecodeByteArray
},
{
"nativeIsSeekable",
"(Ljava/io/FileDescriptor;)Z",
(void*)nativeIsSeekable
},
};
static JNINativeMethod gOptionsMethods[] = {
{
"requestCancel", "()V", (void*)nativeRequestCancel }
};
static jfieldID getFieldIDCheck(JNIEnv* env, jclass clazz,
const char fieldname[], const char type[]) {
jfieldID id = env->GetFieldID(clazz, fieldname, type);
SkASSERT(id);
return id;
}
int register_android_graphics_BitmapFactory(JNIEnv* env) {
jclass options_class = env->FindClass("android/graphics/BitmapFactory$Options");
SkASSERT(options_class);
gOptions_bitmapFieldID = getFieldIDCheck(env, options_class, "inBitmap",
"Landroid/graphics/Bitmap;");
gOptions_justBoundsFieldID = getFieldIDCheck(env, options_class, "inJustDecodeBounds", "Z");
gOptions_sampleSizeFieldID = getFieldIDCheck(env, options_class, "inSampleSize", "I");
gOptions_configFieldID = getFieldIDCheck(env, options_class, "inPreferredConfig",
"Landroid/graphics/Bitmap$Config;");
gOptions_premultipliedFieldID = getFieldIDCheck(env, options_class, "inPremultiplied", "Z");
gOptions_mutableFieldID = getFieldIDCheck(env, options_class, "inMutable", "Z");
gOptions_ditherFieldID = getFieldIDCheck(env, options_class, "inDither", "Z");
gOptions_preferQualityOverSpeedFieldID = getFieldIDCheck(env, options_class,
"inPreferQualityOverSpeed", "Z");
gOptions_scaledFieldID = getFieldIDCheck(env, options_class, "inScaled", "Z");
gOptions_densityFieldID = getFieldIDCheck(env, options_class, "inDensity", "I");
gOptions_screenDensityFieldID = getFieldIDCheck(env, options_class, "inScreenDensity", "I");
gOptions_targetDensityFieldID = getFieldIDCheck(env, options_class, "inTargetDensity", "I");
gOptions_widthFieldID = getFieldIDCheck(env, options_class, "outWidth", "I");
gOptions_heightFieldID = getFieldIDCheck(env, options_class, "outHeight", "I");
gOptions_mimeFieldID = getFieldIDCheck(env, options_class, "outMimeType", "Ljava/lang/String;");
gOptions_mCancelID = getFieldIDCheck(env, options_class, "mCancel", "Z");
jclass bitmap_class = env->FindClass("android/graphics/Bitmap");
SkASSERT(bitmap_class);
gBitmap_nativeBitmapFieldID = getFieldIDCheck(env, bitmap_class, "mNativeBitmap", "J");
gBitmap_ninePatchInsetsFieldID = getFieldIDCheck(env, bitmap_class, "mNinePatchInsets",
"Landroid/graphics/NinePatch$InsetStruct;");
gInsetStruct_class = (jclass) env->NewGlobalRef(env->FindClass("android/graphics/NinePatch$InsetStruct"));
gInsetStruct_constructorMethodID = env->GetMethodID(gInsetStruct_class, "<init>", "(IIIIIIIIFIF)V");
int ret = AndroidRuntime::registerNativeMethods(env,
"android/graphics/BitmapFactory$Options",
gOptionsMethods,
SK_ARRAY_COUNT(gOptionsMethods));
if (ret) {
return ret;
}
return android::AndroidRuntime::registerNativeMethods(env, "android/graphics/BitmapFactory",
gMethods, SK_ARRAY_COUNT(gMethods));
}
主要就是指的复用内存块,不需要在重新给这个bitmap申请一块新的内存,避免了一次内存的分配和回收,从而改善了运行效率。
需要注意的是inBitmap只能在3.0以后使用。2.3上,bitmap的数据是存储在native的内存区域,并不是在Dalvik的内存堆上。
使用inBitmap,在4.4之前,只能重用相同大小的bitmap的内存区域,而4.4之后你可以重用任何bitmap的内存区域,只要这块内存比将要分配内存的bitmap大就可以。这里最好的方法就是使用LRUCache来缓存bitmap,后面来了新的bitmap,可以从cache中按照api版本找到最适合重用的bitmap,来重用它的内存区域。
Google官方文档已经给出了一个非常棒的教程Managing Bitmap Memory
Google官方文档的 Displaying Bitmaps Efficiently 绝对帮你精通bitmap的操作
点9图的使用
为了适配不同的分辨率,首先考虑用 XML 实现。不能用 XML 轻松的写出来的时候就用一套至少包含 hdpi 到 xxxdpi 的素材;需要拉伸的时候就要 .9,.9 也要做到每个 DPI 各一套。
服务端动态返回的图片尺寸处理方法
静态资源一般通过准备多份图片文件(hdpi mdpi ldpi等)来适应不同分辨率,如果在应用中有动态图片资源要处理,一般在服务端返回统一尺寸图片,然后在客户端缩放;也可以由客户端传递宽高,由服务端裁剪。
最后
以上就是乐观自行车为你收集整理的Android之图片相关图片复用点9图的使用服务端动态返回的图片尺寸处理方法的全部内容,希望文章能够帮你解决Android之图片相关图片复用点9图的使用服务端动态返回的图片尺寸处理方法所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复