我是靠谱客的博主 自觉花瓣,这篇文章主要介绍caffe+cuda8.0+cudnn5.1+Ubuntu16.04安装,现在分享给大家,希望可以做个参考。

安装参考网站:
http://caffe.berkeleyvision.org/installation.html caffe官网安装教程
http://blog.csdn.net/dawin_2008/article/details/52382237 caffe安装参考CSDN博客
https://developer.nvidia.com/cuda-downloads CUDA8.0下载和安装网址
https://developer.nvidia.com/rdp/cudnn-download cuDNN下载网站
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation opencv 安装教程网站
https://github.com/opencv/opencv opencv-master下载地址
https://www.continuum.io/downloads Anaconda 下载地址

所需软件:
ubuntu-16.04-desktop-amd64
caffe-master
Anaconda2-4.1.1-Linux-x86_64.sh
cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
cudnn-8.0-linux-x64-v5.1
OpenBLAS-0.2.19.tar
opencv-master

安装顺序:
1、 Ubuntu16.04系统安装
2、 CUDA8.0安装
3、 cuDNN-v5.1 安装
4、 OpenBLAS-0.2.19安装
5、 opencv-master安装
6、 Anaconda2-4.1.1 安装
7、 caffe-master安装

安装过程:
第一步:Ubuntu16.04系统安装
可参考http://www.cnblogs.com/zangyu/p/5653041.html 此为window10下安装Ubuntu16.04双系统的博客教程,和单独安装Ubuntu16.04的差不多。可按照博客教程进行安装。

第二步:基础依赖库的安装
输入一下命令行,根据提示安装即可:

复制代码
1
2
3
$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler $ sudo apt-get install --no-install-recommends libboost-all-dev $ sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

第三步:CUDA8.0安装
Ubuntu16.04 要求是CUDA8.0,所以必须安装CUDA8.0,不然后续估计会有很多麻烦。
https://developer.nvidia.com/cuda-downloads 这个网址是CUDA下载的网址,根据选项,找到适合自己的CUDA进行下载。
这里写图片描述
本教程下载的是:cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
下载完成后,根据网页下面的安装教程进行安装:

复制代码
1
2
3
$ sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb $ sudo apt-get update $ sudo apt-get install cuda

安装完成后,在/etc/profile 文件中增加两行内容:
(必须以管理员权限打开,否则无法修改保存。打开文件命令:$ sudo gedit /etc/profile)

复制代码
1
2
export PATH=/usr/local/cuda-8.0/bin:$PATH #即CUDA8.0所安装路径下的bin文件夹路径,根据自己的安装路径进行修改 export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH #即CUDA8.0所安装路径下的lib64文件夹路径,根据自己的安装路径进行修改

第四步:cuDNN-v5.1 安装
https://developer.nvidia.com/rdp/cudnn-download 该网站为cuDNN下载网站,需要注册才能下载。
登录账号之后,找到下载位置,同意,并找到所需要的版本,本教程使用的是针对CUDA8.0的版本cuDNN v5.1 Library for Linux,如下图所示,直接点击即可下载。
这里写图片描述

下载完成后,将安装包放到home下(不放也行,但要记得安装包所在路径)进行安装:

复制代码
1
2
3
4
5
6
7
8
9
10
$ sudo tar xvf cudnn-8.0-linux-x64-v5.1.tgz #使用命令将文件解压,也可自行解压 $ cd cuda/include #进入解压后的文件夹中的include文件夹中 $ sudo cp *.h /usr/local/include/ #拷贝文件到/usr/local/include/中 $ cd ../lib64 $ sudo cp lib* /usr/local/lib/ $ cd /usr/local/lib $ sudo chmod +r libcudnn.so.5.1.5 $ sudo ln -sf libcudnn.so.5.1.5 libcudnn.so.5 $ sudo ln -sf libcudnn.so.5 libcudnn.so $ sudo ldconfig

安装完成后,参照第三步的方法,将

复制代码
1
2
export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

添加到/etc/profile 文件中。
使用命令,使得文件生效。

复制代码
1
$ source /etc/profile

验证安装情况:
1) 进入/usr/local/cuda/samples文件夹下
2) 使用命令$ sudo make all –j $(nproc) 编译例子
3) 编译完成后,进入 /usr/local/cuda/samples/bin/x86_64/linux/release 文件夹下

复制代码
1
$ ./deviceQuery #运行编译后的文件

运行完成后可看到CUDA以及GPU的版本信息。Result = PASS表示通过,安装成功。

第五步:OpenBLAS-0.2.19安装
下载地址: http://www.openblas.net/

这里写图片描述
安装过程:
1> 使用命令解压文件
tarzxvfOpenBLAS0.2.19.tar.gz2>cd/your/path/OpenBLAS使 cd ~/OpenBLAS)
3> 编译

复制代码
1
2
$ make $ make PREFIX=/home/username/yourpath/OpenBLAS #根据解压路径进行路径修改

将路径添加到~/.bashrc文件中(打开方式:$ sudo gedit ~/.bashrc ):

复制代码
1
$ export LD_LIBRARY_PATH=/home/username/yourpath/OpenBLAS:$LD_LIBRARY_PATH

第六步:opencv-master安装
Opencv官网安装教程:http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation
Opencv下载地址 :https://github.com/opencv/opencv
官网上下载的opencv可能不适合该环境下安装,我尝试过几个版本(opencv3.0、opencv3.1、opencv2.4)均编译失败,使用本版本可以编译通过。
根据官网的提示,安装opencv的教程大致如下:
先安装基本依赖库:

复制代码
1
2
3
$ sudo apt-get install build-essential $ sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev $ sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

然后创建一个文件夹opencv,进入创建的文件夹下

复制代码
1
$ cd opencv

将下载的opencv-master压缩文件解压到新建的opencv文件夹中
在opencv文件夹中新建一个release文件夹,并进入其中,进行编译:

复制代码
1
2
3
4
5
$ mkdir release $ cd release $ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local .. $ make $ sudo make install

安装过程中可能会卡在下载ippicv_linux_20151201中,这时可以自己下载,之后将自行下载的ippicv_linux_20151201文件放在/opencv/3rdparty/ippicv/download/ linux-808b791a6eac9ed78d32a7666804320e/文件下路径下。不同opencv版本对应的ippicv_linux文件不同,但方法都一样。

重复编译opencv时,需要先进行清理,即使用make clean 命令将之前编译过的文件进行清理。

第七步:Anaconda2-4.1.1 安装
Anaconda 下载地址 :https://www.continuum.io/downloads
Anaconda下载之后是一个可执行的shell脚本文件,可直接$ bash Anaconda2-4.1.1-Linux-x86_64.sh示进行安装。
安装完成之后,修改~/.bashrc文件,在文件里加入:

复制代码
1
2
$ sudo gedit ~/.bashrc #打开方式 $ export PATH=/home/username/yourpath/anaconda2/bin:$PATH #需要添加的内容

第八步:caffe-master安装
caffe-master下载地址:https://github.com/BVLC/caffe
caffe-master官方安装参考: http://caffe.berkeleyvision.org/installation.html

安装过程:
首先将下载的caffe-master压缩文件解压到caffe文件夹(自己新建的文件夹)中。
然后将当前路径cd到caffe文件夹下。

复制代码
1
$ cd /home/username/yourpath/caffe

执行以下命令:

复制代码
1
$ cp Makefile.config.example Makefile.config

之后调整配置文件Makefile.config,根据安装过的文件版本进行修改。文章后面会贴出本文配置下的Makefile.config文件配置。
配置完成后执行以下命令进行编译:

复制代码
1
2
3
$ make all $ make test $ make runtest

也可以使用官网提供的另外一种安装方式,这里不再给出,可以在caffe-master官方安装参考链接中找到。

在进行make runtest时可以会出现下面的错误:

复制代码
1
error while loading shared libraries: libhdf5_hl.so.10: cannot open shared object file: No such file or directory

错误显示该文件不存在,实际上该文件时存在的。此时的解决方案是:
在~/.bashrc 文件中加入以下语句:

复制代码
1
2
3
4
export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/home/username/yourpath/anaconda2/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/home/username/yourpath/OpenBLAS:$LD_LIBRARY_PATH

之后再进行make runtest,成功后会显示下图状态:
这里写图片描述

第九步:编译Python wrapper
直接在caffe根目录下进行如下命令即可:

复制代码
1
$ make pycaffe

在使用Python进行import caffe时,可能会出现

复制代码
1
ImportError: No module named google.protobuf.internal

错误,此时只需下载安装protobuf文件即可:

复制代码
1
$ pip install protobuf

也可直接将该文件下载下来进行安装

复制代码
1
$ pip install protobuf-3.1.0.post1-py2.py3-none-any.whl

以上安装方法为回忆版,所以安装过程中的截图没有给出,安装过成中的细节也没能全部写出。如有疑问或者安装过程中遇到问题可以随时留言给我 .大家共同探讨。

/.bashrc文件内容:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# ~/.bashrc: executed by bash(1) for non-login shells. # see /usr/share/doc/bash/examples/startup-files (in the package bash-doc) # for examples # If not running interactively, don't do anything case $- in *i*) ;; *) return;; esac # don't put duplicate lines or lines starting with space in the history. # See bash(1) for more options HISTCONTROL=ignoreboth # append to the history file, don't overwrite it shopt -s histappend # for setting history length see HISTSIZE and HISTFILESIZE in bash(1) HISTSIZE=1000 HISTFILESIZE=2000 # check the window size after each command and, if necessary, # update the values of LINES and COLUMNS. shopt -s checkwinsize # If set, the pattern "**" used in a pathname expansion context will # match all files and zero or more directories and subdirectories. #shopt -s globstar # make less more friendly for non-text input files, see lesspipe(1) [ -x /usr/bin/lesspipe ] && eval "$(SHELL=/bin/sh lesspipe)" # set variable identifying the chroot you work in (used in the prompt below) if [ -z "${debian_chroot:-}" ] && [ -r /etc/debian_chroot ]; then debian_chroot=$(cat /etc/debian_chroot) fi # set a fancy prompt (non-color, unless we know we "want" color) case "$TERM" in xterm-color|*-256color) color_prompt=yes;; esac # uncomment for a colored prompt, if the terminal has the capability; turned # off by default to not distract the user: the focus in a terminal window # should be on the output of commands, not on the prompt #force_color_prompt=yes if [ -n "$force_color_prompt" ]; then if [ -x /usr/bin/tput ] && tput setaf 1 >&/dev/null; then # We have color support; assume it's compliant with Ecma-48 # (ISO/IEC-6429). (Lack of such support is extremely rare, and such # a case would tend to support setf rather than setaf.) color_prompt=yes else color_prompt= fi fi if [ "$color_prompt" = yes ]; then PS1='${debian_chroot:+($debian_chroot)}[33[01;32m]u@h[33[00m]:[33[01;34m]w[33[00m]$ ' else PS1='${debian_chroot:+($debian_chroot)}u@h:w$ ' fi unset color_prompt force_color_prompt # If this is an xterm set the title to user@host:dir case "$TERM" in xterm*|rxvt*) PS1="[e]0;${debian_chroot:+($debian_chroot)}u@h: wa]$PS1" ;; *) ;; esac # enable color support of ls and also add handy aliases if [ -x /usr/bin/dircolors ]; then test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)" alias ls='ls --color=auto' #alias dir='dir --color=auto' #alias vdir='vdir --color=auto' alias grep='grep --color=auto' alias fgrep='fgrep --color=auto' alias egrep='egrep --color=auto' fi # colored GCC warnings and errors #export GCC_COLORS='error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01' # some more ls aliases alias ll='ls -alF' alias la='ls -A' alias l='ls -CF' # Add an "alert" alias for long running commands. Use like so: # sleep 10; alert alias alert='notify-send --urgency=low -i "$([ $? = 0 ] && echo terminal || echo error)" "$(history|tail -n1|sed -e '''s/^s*[0-9]+s*//;s/[;&|]s*alert$//''')"' # Alias definitions. # You may want to put all your additions into a separate file like # ~/.bash_aliases, instead of adding them here directly. # See /usr/share/doc/bash-doc/examples in the bash-doc package. if [ -f ~/.bash_aliases ]; then . ~/.bash_aliases fi # enable programmable completion features (you don't need to enable # this, if it's already enabled in /etc/bash.bashrc and /etc/profile # sources /etc/bash.bashrc). if ! shopt -oq posix; then if [ -f /usr/share/bash-completion/bash_completion ]; then . /usr/share/bash-completion/bash_completion elif [ -f /etc/bash_completion ]; then . /etc/bash_completion fi fi # added by Anaconda2 4.1.1 installer export PATH="/home/z/anaconda2/bin:$PATH" export PATH="/home/z/anaconda2/lib:$PATH" export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/home/z/OpenBLAS:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/home/z/anaconda2/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/home/z/anaconda2:$LD_LIBRARY_PATH

/etc/profile文件内容:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# /etc/profile: system-wide .profile file for the Bourne shell (sh(1)) # and Bourne compatible shells (bash(1), ksh(1), ash(1), ...). if [ "$PS1" ]; then if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then # The file bash.bashrc already sets the default PS1. # PS1='h:w$ ' if [ -f /etc/bash.bashrc ]; then . /etc/bash.bashrc fi else if [ "`id -u`" -eq 0 ]; then PS1='# ' else PS1='$ ' fi fi fi if [ -d /etc/profile.d ]; then for i in /etc/profile.d/*.sh; do if [ -r $i ]; then . $i fi done unset i fi export PATH=/usr/local/cuda-8.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

Makefile.config配置文件内容:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 -gencode arch=compute_20,code=sm_21 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! BLAS_INCLUDE := /home/z/OpenBLAS/include BLAS_LIB := /home/z/OpenBLAS/lib # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/z/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include $(ANACONDA_HOME)/include/python2.7 $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @

最后

以上就是自觉花瓣最近收集整理的关于caffe+cuda8.0+cudnn5.1+Ubuntu16.04安装的全部内容,更多相关caffe+cuda8内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部