概述
前言:最近开始学习SQLAlchemy,本教程是其官方文档以及在读英文版<Essential SQLAlchemy>的翻译加一些自己的理解和总结
1 什么是 SQLAlchemy?
它是给mysql, oracle,sqlite等关系型数据库的python接口,不需要大幅修改原有的python代码,它已经包含了SQL表达式语言和ORM,看一些例子:
sql=”INSERT INTO user(user_name, password) VALUES (%s, %s)”
cursor = conn.cursor()
cursor.execute(sql, (‘dongwm’, ‘testpass’))
以上是一个常用的mysql的SQL语句,但是冗长也容易出错,并且可能导致安全问题(因为是字符串的语句,会存在SQL注入),并且代码不跨平台,在不同数据库软件的语句不同(以下是一个 Oracle例子),不具备客移植性:
sql=”INSERT INTO user(user_name, password) VALUES (:1, :2)”
cursor = conn.cursor()
cursor.execute(sql, ‘dongwm’, ‘testpass’)
而在SQLAlchemy里只需要这样写:
statement = user_table.insert(user_name=’rick’, password=’parrot’)
statement.execute() #护略是什么数据库环境
SQLAlchemy还能让你写出很pythonic的语句:
statement = user_table.select(and_(
user_table.c.created >= date(2007,1,1),
user_table.c.created < date(2008,1,1))
result = statement.execute() #检索所有在2007年创建的用户
metadata=MetaData(‘sqlite://’) # 告诉它你设置的数据库类型是基于内存的sqlite
user_table = Table( #创建一个表
‘tf_user’, metadata,
Column(‘id’, Integer, primary_key=True), #一些字段,假设你懂SQL,那么以下的字段很好理解
Column(‘user_name’, Unicode(16), unique=True, nullable=False),
Column(‘email_address’, Unicode(255), unique=True, nullable=False),
Column(‘password’, Unicode(40), nullable=False),
Column(‘first_name’, Unicode(255), default=”),
Column(‘last_name’, Unicode(255), default=”),
Column(‘created’, DateTime, default=datetime.now))
users_table = Table(‘users’, metadata, autoload=True) #假设table已经存在.就不需要指定字段,只是加个autoload=True
class User(object): pass #虽然SQLAlchemy强大,但是插入更新还是需要手动指定,可以使用ORM,方法就是:设定一个类,定义一个表,把表映射到类里面
mapper(User, user_table)
下面是一个完整ORM的例子:
Source code |
|
from sqlalchemy.orm import mapper, sessionmaker #sessionmaker()函数是最常使用的创建最顶层可用于整个应用Session 的方法,Session管理着所有与数据库之间的会话
from datetime import datetime
from sqlalchemy import Table, MetaData, Column,ForeignKey, Integer, String, Unicode, DateTime #会SQL的人能理解这些函数吧?
engine = create_engine("sqlite:///tutorial.db",echo=True) #创建到数据库的连接,echo=True表示用logging输出调试结果
metadata = MetaData() #跟踪表属性
user_table = Table( #创建一个表所需的信息:字段,表名等
'tf_user', metadata,
Column('id', Integer, primary_key=True),
Column('user_name', Unicode(16), unique=True,nullable=False),
Column('email_address', Unicode(255), unique=True,nullable=False),
Column('password', Unicode(40), nullable=False),
Column('first_name', Unicode(255), default=''),
Column('last_name', Unicode(255), default=''),
Column('created', DateTime, default=datetime.now))
metadata.create_all(engine) #在数据库中生成表
class User(object): pass #创建一个映射类
mapper(User, user_table) #把表映射到类
Session = sessionmaker() #创建了一个自定义了的 Session类
Session.configure(bind=engine) #将创建的数据库连接关联到这个session
session = Session()
u = User()
u.user_name='dongwm'
u.email_address='dongwm@dongwm.com'
u.password='testpass' #给映射类添加以下必要的属性,因为上面创建表指定这几个字段不能为空
session.add(u) #在session中添加内容
session.flush() #保存数据
session.commit() #数据库事务的提交,sisson自动过期而不需要关闭
query = session.query(User) #query() 简单的理解就是select() 的支持 ORM 的替代方法,可以接受任意组合的 class/column 表达式
print list(query) #列出所有user
print query.get(1) #根据主键显示
print query.filter_by(user_name='dongwm').first() #类似于SQL的where,打印其中的第一个
u = query.filter_by(user_name='dongwm').first()
u.password = 'newpass' #修改其密码字段
session.commit() #提交事务
print query.get(1).password #打印会出现新密码
for instance insession.query(User).order_by(User.id): #根据id字段排序,打印其中的用户名和邮箱地址
printinstance.user_name, instance.email_address
既然是ORM框架,我们来一个更复杂的包含关系的例子,先看sql语句:
CREATE TABLE tf_user (
id INTEGER NOT NULL,
user_name VARCHAR(16) NOT NULL,
email_address VARCHAR(255) NOT NULL,
password VARCHAR(40) NOT NULL,
first_name VARCHAR(255),
last_name VARCHAR(255),
created TIMESTAMP,
PRIMARY KEY (id),
UNIQUE (user_name),
UNIQUE (email_address));
CREATE TABLE tf_group (
id INTEGER NOT NULL,
group_name VARCHAR(16) NOT NULL,
PRIMARY KEY (id),
UNIQUE (group_name));
CREATE TABLE tf_permission (
id INTEGER NOT NULL,
permission_name VARCHAR(16) NOT NULL,
PRIMARY KEY (id),
UNIQUE (permission_name));
CREATE TABLE user_group (
user_id INTEGER,
group_id INTEGER,
PRIMARY KEY(user_id, group_id),
FOREIGN KEY(user_id) REFERENCES tf_user (id), #user_group的user_id关联了tf_user的id字段
FOREIGN KEY(group_id) REFERENCES tf_group (id)); #group_id关联了 tf_group 的id字段
CREATE TABLE group_permission (
group_id INTEGER,
permission_id INTEGER,
PRIMARY KEY(group_id, permission_id),
FOREIGN KEY(group_id) REFERENCES tf_group (id), #group_permission的id关联 tf_group的id字段
FOREIGN KEY(permission_id) REFERENCES tf_permission (id)); #permission_id关联了tf_permission 的id字段
这是一个复杂的多对多的关系,比如检查用户是否有admin权限,sql需要这样:
SELECT COUNT(*) FROM tf_user, tf_group, tf_permission WHERE
tf_user.user_name=’dongwm’ AND tf_user.id=user_group.user_id
AND user_group.group_id = group_permission.group_id
AND group_permission.permission_id = tf_permission.id
AND permission_name=’admin’; 看起来太复杂并且繁长了
在面向对象的世界里,是这样的:
class User(object):
groups=[]
class Group(object):
users=[]
permissions=[]
class Permission(object):
groups=[]
Source code |
|
print 'Summary for %s' % user.user_name
for g in user.groups:
print 'Member of group %s' % g.group_name
for p ing.permissions:
print'... which has permission %s' % p.permission_name
Source code |
|
def user_has_permission(user, permission_name): #检查用户是否有permission_name的权限的函数
for g inuser.groups:
for p ing.permissions: #可以看出来使用了for循环
ifp.permission_name == 'admin':
return True
return False
而在SQLAlchemy中,这样做:
mapper(User, user_table, properties=dict(
groups=relation(Group, secondary=user_group, backref=’users’))) #properties是一个字典值。增加了一个groups 值,它又是一个relation 对象,这个对象实现
#了Group类与user_group的 映射。这样我通过user_table的groups 属性就可以反映出RssFeed的值来,
#中间表对象(user_group)传给secondary参数,backref为自己的表(users)
mapper(Group, group_table, properties=dict(
permissions=relation(Permission, secondary=group_permission,
backref=’groups’)))
mapper(Permission, permission_table)
q = session.query(Permission)
dongwm_is_admin = q.count_by(permission_name=’admin’,user_name=’dongwm’)
假如计算组里用户数(不包含忘记删除但是重复的)
for p in permissions:
users = set()
for g in p.groups:
for u in g.users:
users.add(u)
print ‘Permission %s has %d users’ % (p.permission_name, len(users))
在SQLAlchemy可以这样:
q=select([Permission.c.permission_name,
func.count(user_group.c.user_id)],
and_(Permission.c.id==group_permission.c.permission_id,
Group.c.id==group_permission.c.group_id,
Group.c.id==user_group.c.group_id),
group_by=[Permission.c.permission_name],
distinct=True)
rs=q.execute()
for permission_name, num_users in q.execute():
print ‘Permission %s has %d users’ % (permission_name, num_users) #虽然也长,但是减少了数据库查询次数,也就是让简单事情简单化,复杂事情可能简单解决
看一个综合的例子:
class User(object): #这些类设计数据库的模型
def __init__(self, group_name=None, users=None, permissions=None):
if users is None: users = []
if permissions is None: permissions = []
self.group_name = group_name
self._users = users
self._permissions = permissions
def add_user(self, user):
self._users.append(user)
def del_user(self, user):
self._users.remove(user)
def add_permission(self, permission):
self._permissions.append(permission)
def del_permission(self, permission):
self._permissions.remove(permission)
class Permission(object):
def __init__(self, permission_name=None, groups=None):
self.permission_name = permission_name
self._groups = groups
def join_group(self, group):
self._groups.append(group)
def leave_group(self, group):
self._groups.remove(group)
用sqlalchemy的效果是这样的:
user_table = Table(
‘tf_user’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘user_name’, Unicode(16), unique=True, nullable=False),
Column(‘password’, Unicode(40), nullable=False))
group_table = Table(
‘tf_group’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘group_name’, Unicode(16), unique=True, nullable=False))
permission_table = Table(
‘tf_permission’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘permission_name’, Unicode(16), unique=True,
nullable=False))
user_group = Table(
‘user_group’, metadata,
Column(‘user_id’, None, ForeignKey(‘tf_user.id’),
primary_key=True),
Column(‘group_id’, None, ForeignKey(‘tf_group.id’),
primary_key=True))
group_permission = Table(
‘group_permission’, metadata,
Column(‘group_id’, None, ForeignKey(‘tf_group.id’),
primary_key=True),
Column(‘permission_id’, None, ForeignKey(‘tf_permission.id’),
primary_key=True))
mapper(User, user_table, properties=dict(
_groups=relation(Group, secondary=user_group, backref=’_users’)))
mapper(Group, group_table, properties=dict(
_permissions=relation(Permission, secondary=group_permission,
backref=_’groups’)))
mapper(Permission, permission_table)
这里没有修改对象,而join_group,leave_group这样的函数依然可用,sqlalchemy会跟踪变化,并且自动刷新数据库
上面介绍了一个完整的例子,连接数据库嗨可以这样:
engine = create_engine(‘sqlite://’)
connection = engine.connect() #使用connect
result = connection.execute(“select user_name from tf_user”)
for row in result:
print ‘user name: %s’ % row['user_name']
result.close()
engine = create_engine(‘sqlite://’, strategy=’threadlocal’) #,strategy=’threadlocal’表示重用其它本地线程减少对数据库的访问
from sqlalchemy.databases.mysql import MSEnum, MSBigInteger #这个 sqlalchemy.databases是某数据库软件的’方言’集合,只支持特定平台
user_table = Table(‘tf_user’, meta,
Column(‘id’, MSBigInteger),
Column(‘honorific’, MSEnum(‘Mr’, ‘Mrs’, ‘Ms’, ‘Miss’, ‘Dr’, ‘Prof’)))
以下是几个MetaData的应用:
unbound_meta = MetaData() #这个metadata没有绑定
db1 = create_engine(‘sqlite://’)
unbound_meta.bind = db1 #关联引擎
db2 = MetaData(‘sqlite:///test1.db’) #直接设置引擎
bound_meta1 = MetaData(db2)
# Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData(‘sqlite:///test2.db’) #隐式绑定引擎
meta = MetaData(‘sqlite://’) #直接绑定引擎可以让源数据直接访问数据库
user_table = Table(
‘tf_user’, meta,
Column(‘id’, Integer, primary_key=True),
Column(‘user_name’, Unicode(16), unique=True, nullable=False),
Column(‘password’, Unicode(40), nullable=False))
group_table = Table(
‘tf_group’, meta,
Column(‘id’, Integer, primary_key=True),
Column(‘group_name’, Unicode(16), unique=True, nullable=False))
meta.create_all() #创建所有的数据库(以上2个),函数无参数
result_set = group_table.select().execute() #选取 group_table的所有表数据
以下看一个关联多引擎的例子:
meta = MetaData() #这里不能直接关联了
engine1 = create_engine(‘sqlite:///test1.db’) #2个引擎
engine2 = create_engine(‘sqlite:///test2.db’)
# Use the engine parameter to load tables from the first engineuser_table= Table(
‘tf_user’, meta, autoload=True, autoload_with=engine1) #从第一个引擎加载这些表
group_table = Table(
‘tf_group’, meta, autoload=True, autoload_with=engine1)
permission_table = Table(
‘tf_permission’, meta, autoload=True, autoload_with=engine1)
user_group_table = Table(
‘user_group’, meta, autoload=True, autoload_with=engine1)
group_permission_table = Table(
‘group_permission’, meta, autoload=True, autoload_with=engine1)
meta.create_all(engine2) #在第二个引擎里面创建表
class ImageType(sqlalchemy.types.Binary): #自定义我们的table的类
def convert_bind_param(self, value, engine):
sfp = StringIO()
value.save(sfp, ‘JPEG’)
return sfp.getvalue()
def convert_result_value(self, value, engine):
sfp = StringIO(value)
image = PIL.Image.open(sfp)
return image #这里我们定义了一个图形处理的类型
当定义了metadata后,会自定生成一个table.cobject:
q = user_table.select( #查询创建在2007年6月1号之前的用户,并且第一个字母是’r’
user_table.c.user_name.like(‘r%’) #这里的c就是那个特殊的类,当使用sql表达式会用到
& user_table.c.created < datetime(2007,6,1))
或者替代这样:
q = user_table.select(and_(
user_table.c.user_name.like(‘r%’),
user_table.c.created < datetime(2007,6,1)))
也可以使用rom映射:
q = session.query(User)
q = q.filter(User.c.user_name.like(‘r%’)
& User.c.created > datetime(2007,6,1))
还是一个ORM的例子:
user_table = Table(
‘tf_user’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘user_name’, Unicode(16), unique=True, nullable=False),
Column(‘email_address’, Unicode(255), unique=True, nullable=False),
Column(‘password’, Unicode(40), nullable=False),
Column(‘first_name’, Unicode(255), default=”),
Column(‘last_name’, Unicode(255), default=”),
Column(‘created’, DateTime, default=datetime.now)) #这是一个定义的表类型
group_table = Table(
‘tf_group’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘group_name’, Unicode(16), unique=True, nullable=False))
user_group = Table(
‘user_group’, metadata,
Column(‘user_id’, None, ForeignKey(‘tf_user.id’), primary_key=True),
Column(‘group_id’, None, ForeignKey(‘tf_group.id’),
… primary_key=True))
import sha
class User(object): #映射类
def _get_password(self):
return self._password
def _set_password(self, value):
self._password = sha.new(value).hexdigest() #只存储用户的哈希密码
password=property(_get_password, _set_password)
def password_matches(self, password):
return sha.new(password).hexdigest() == self._password
mapper(User, user_table, properties=dict( #映射将创建id, user_name, email_address, password, first_name, last_name,created等字段
_password=user_table.c.password)) #使用哈希后的密码替换真实密码,数据库只保存哈希后的,这里在orm上修改
mapper(User, user_table, properties=dict(
_password=user_table.c.password,
groups=relation(Group, secondary=user_group, backref=’users’))) #这里表示可以访问所有的组,用户只需访问一个成员团体属性,user_group映射类添加group和Group关联,
# User类添加users访问group属性,看效果:
group1.users.append(user1) #给group1添加用户user1,自动更新
user2.groups.append(group2) #把user2添加到group2组,自动更新
对于SQLAlchemy的一些总结:
1 metadata.create_all()
创建多个table可以这样使用,但是他还有个功能,它添加了”IF NOT EXISTS”,就是在数据库存在的时候,他还是安全的
2 交互模式下的一个全过程:
Source code |
|
dongwm@localhost ~ $ python
Python 2.7.3 (default, Jul 11 2012, 10:10:17)
[GCC 4.5.3] on linux2
Type "help", "copyright", "credits" or"license" for more information.
>>> from sqlalchemy import create_engine
>>> from sqlalchemy import Table, MetaData, Column, ForeignKey,Integer, String, Unicode, DateTime
>>> from datetime import datetime
>>> metadata = MetaData('sqlite:///tutorial.db')
>>> user_table = Table(
... 'tf_user', metadata,
... Column('id', Integer,primary_key=True),
... Column('user_name',Unicode(16),
... unique=True,nullable=False),
... Column('password',Unicode(40), nullable=False),
... Column('display_name',Unicode(255), default=''),
... Column('created', DateTime,default=datetime.now))
__main__:7: SAWarning: Unicode column received non-unicode default value.
>>> stmt = user_table.insert() #插入数据
>>> stmt.execute(user_name='dongwm1',password='secret',display_name='testdongwm1')
/usr/lib/python2.7/site-packages/SQLAlchemy-0.7.8-py2.7-linux-i686.egg/sqlalchemy/engine/default.py:463:SAWarning: Unicode type received non-unicode bind param value.
param.append(processors[key](compiled_params[key]))
<sqlalchemy.engine.base.ResultProxy object at 0x8377fcc>
>>> stmt.execute(user_name='dongwm2',password='secret',display_name='testdongwm2') #这个实例可以多次插入,和sql区别很大
<sqlalchemy.engine.base.ResultProxy object at 0x837e4ec>
>>> stmt = user_table.select() #select查询
>>> result = stmt.execute()
>>> for row in result:
... print row
...
(1, u'dongwm1', u'secret', u'testdongwm1', datetime.datetime(2012, 7, 17,11, 57, 48, 515953))
(2, u'dongwm2', u'secret', u'testdongwm2', datetime.datetime(2012, 7, 17,11, 58, 5, 226977))
>>> result = stmt.execute()
>>> row =result.fetchone() #只获取符合要求的第一项
>>> print row['user_name']
dongwm1
>>> print row.password
secret
>>> print row.items()
[(u'id', 1), (u'user_name', u'dongwm1'), (u'password', u'secret'),(u'display_name', u'testdongwm1'), (u'created', datetime.datetime(2012, 7, 17,11, 57, 48, 515953))]
>>> stmt = user_table.select(user_table.c.user_name=='dongwm1') #过滤留下user_name=='dongwm1的项
>>> print stmt.execute().fetchall() #获取所有符合项
[(1, u'dongwm1', u'secret', u'testdongwm1', datetime.datetime(2012, 7, 17,11, 57, 48, 515953))]
>>> stmt = user_table.update(user_table.c.user_name=='dongwm1') #更新数据
>>> stmt.execute(password='secret123') #修改密码
<sqlalchemy.engine.base.ResultProxy object at 0x8377f6c>
>>> stmt = user_table.delete(user_table.c.user_name !='dongwm1') #删除user_name不是dongwm1的条目
>>> stmt.execute()
<sqlalchemy.engine.base.ResultProxy object at 0x837f3ac>
>>> user_table.select().execute().fetchall() #查询发现就剩一条了
[(1, u'dongwm1', u'secret123', u'testdongwm1', datetime.datetime(2012, 7,17, 11, 57, 48, 515953))]
3 sission上面已经说过了,补充一些:
session.delete(u) #把映射类从会话中删除
4 关于引擎
引擎就是根据不同的数据库方言连接数据库的方法
以下是一些例子(方法 driver://username:password@host:port/database):
engine = create_engine(‘sqlite://’) #连接基于内存的sqlite
engine = create_engine(‘sqlite:///data.sqlite’) #连接基于硬盘文件的sqlite
engine = create_engine(‘postgres://dongwm:foo@localhost:5432/pg_db’) #连接postgresql
engine = create_engine(‘mysql://localhost/mysql_db’) #连接mysql
engine = create_engine(‘oracle://dongwm:foo@oracle_tns’) #连接基于TNS协议的Oracle
engine =create_engine(‘oracle://dongwm:foo@localhost:1521/oracle_sid’) #连接没有TNS名字的Oracle
也可以带一些参数:
url=’postgres://dongwm:foo@localhost/pg_db?arg1=foo&arg2=bar’
engine = create_engine(url)
或者:
engine = create_engine(‘postgres://dongwm:foo@localhost/pg_db’,
connect_args=dict(arg1=’foo’, arg2=’bar’))
还可以通过函数完全控制连接:
import psycopg
def connect_pg():
return psycopg.connect(user=’rick’, host=’localhost’)
engine = create_engine(‘postgres://’, creator=connect_pg)
import logging
handler = logging.FileHandler(‘sqlalchemy.engine.log’) #可以给它添加一个日志文件处理类
handler.level = logging.DEBUG
logging.getLogger(‘sqlalchemy.engine’).addHandler(handler)
上面说的操作表,也可以直接操作数据库:
conn = engine.connect()
result = conn.execute(‘select user_name, email_address from tf_user’) #结果是一个sqlalchemy.engine.ResultProxy的实例
for row in result:
print ‘User name: %s Email address: %s’ % (
row['user_name'], row['email_address'])
conn.close()
from sqlalchemy import pool #本来它已经自动通过数据库连接管理数据池,但是也可以手动管理
import psycopg2
psycopg = pool.manage(psycopg2) #结果是一个sqlalchemy.pool.DBProxy实例
connection = psycopg.connect(database=’mydb’,
username=’rick’, password=’foo’)
5 关于元数据metadata
它收集了描述table对象等的元数据类,当使用ORM等时必须使用metadata
如果他被绑定了,那么使用table.create()就会生成表,没有绑定需要:table.create(bind=some_engine_or_connection),其中table.create
包含一些函数:
autoload:默认是false,当数据库已经存在这个table会自动加载覆盖
autoload_with:默认是false,是否自动加载引擎的字段结构
reflect:默认是false,是否体现源表结构
brand_table = Table(‘brand’, metadata,
Column(‘name’, Unicode(255)), # 覆盖类型
autoload=True)
6 关于表结构:
设置表主键可以这样:
Column(‘brand_id’, Integer, ForeignKey(‘brand.id’),primary_key=True), #通过primary_key=True
Column(‘sku’, Unicode(80), primary_key=True))
也可以这样:
product_table = Table(
‘product’, metadata,
Column(‘brand_id’, Integer, ForeignKey(‘brand.id’)),
Column(‘sku’, Unicode(80)),
PrimaryKeyConstraint(‘brand_id’, ‘sku’, name=’prikey’)) #通过PrimaryKeyConstraint
style_table = Table(
‘style’, metadata,
Column(‘brand_id’, Integer, primary_key=True),
Column(‘sku’, Unicode(80), primary_key=True),
Column(‘code’, Unicode(80), primary_key=True),
ForeignKeyConstraint( #使用复合键,关联外部表的字段
['brand_id', 'sku'],
['product.brand_id', 'product.sku']))
product_table = Table(
‘product’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘brand_id’, Integer, ForeignKey(‘brand.id’)), #他的brand_id关联brand的让id
Column(‘sku’, Unicode(80)),
UniqueConstraint(‘brand_id’, ‘sku’)) #约束唯一标识数据库表中的每条记录
payment_table = Table(
‘payment’, metadata,
Column(‘amount’, Numeric(10,2), CheckConstraint(‘amount > 0′))) #验证amount大于0
user_table = Table(
‘tf_user’, MetaData(),
Column(‘id’, Integer, primary_key=True),
Column(‘user_name’, Unicode(16), unique=True, nullable=False),
Column(‘password’, Unicode(40), nullable=False),
Column(‘first_name’, Unicode(255), default=”),
Column(‘last_name’, Unicode(255), default=”),
Column(‘created_apptime’, DateTime, default=datetime.now), #default表示当不舍定具体值时设定一个默认值
Column(‘created_dbtime’, DateTime, PassiveDefault(‘sysdate’)), # PassiveDefault是数据库级别的默认值,
Column(‘modified’, DateTime, onupdate=datetime.now)) #单设置onupdate这个属性,这是不应用到数据库的设计中的.只是存在于映射类中.
#它是活跃更新的,因为每次执行的时间都不同
user_table = Table(
‘tf_user’, MetaData(),
Column(‘id’, Integer, primary_key=True),
Column(‘user_name’, Unicode(16), unique=True, nullable=False, index=True), #一旦数据库增长到一定规模时,可能需要考虑增加表的索引,以加快某些操作
Column(‘password’, Unicode(40), nullable=False),
Column(‘first_name’, Unicode(255), default=”),
Column(‘last_name’, Unicode(255), default=”, index=True))
其中指定索引也可以这样:
i = Index(‘idx_name’,user_table.c.first_name,user_table.c.last_name,unique=True)
i.create(bind=e)
brand_table = Table(
‘brand’, metadata,
Column(‘id’, Integer, Sequence(‘brand_id_seq’), primary_key=True), #需要通过序列化方式来创建新主键标识符的数据库,
#SQLAlchemy 并不会自动为其生成。可以指定Sequence生成
Column(‘name’, Unicode(255), unique=True, nullable=False))
7 元数据操作
meta1 = MetaData(‘postgres://postgres:password@localhost/test’,
… reflect=True)
meta2 = MetaData(‘sqlite://’)
for table in meta1.table_iterator():
table.tometadata(meta2) #通过这个方法让meta1的元数据被meta2使用
meta2.create_all()
2 假如想放弃绑定使用drop_all( )或者drop(e)
1 自定义表结构类型:
from sqlalchemy import types
class MyCustomEnum(types.TypeDecorator): #自定义的类型继承至types.TypeDecorator
impl=types.Integer #实现指定的类型int
def __init__(self, enum_values, *l, **kw):
types.TypeDecorator.__init__(self, *l, **kw)
self._enum_values = enum_values
def convert_bind_param(self, value, engine): #必须含有这个方法,转换python语言为SQL
result = self.impl.convert_bind_param(value, engine)
if result not in self._enum_values:
raise TypeError, (
“Value %s must be one of %s” % (result, self._enum_values))
return result
def convert_result_value(self, value, engine): #必须含有这个方法,通过db的api把SQL转换成python语言
‘Do nothing here’
return self.impl.convert_result_value(value, engine)
看一个例子:
Source code |
|
from sqlalchemy import types
from sqlalchemy.databases import sqlite
class MyCustomEnum(types.TypeDecorator):
impl = types.Integer
def __init__(self, enum_values,*l, **kw):
types.TypeDecorator.__init__(self, *l, **kw)
self._enum_values =enum_values
def bind_processor(self,dialect): #如果提供这个方法会替代convert_bind_param( )和convert_result_value( )
impl_processor =self.impl.bind_processor(dialect)
if impl_processor:
def processor(value):
result =impl_processor(value)
assert value inself._enum_values,
"Value %smust be one of %s" % (result,
self._enum_values)
return result
else:
def processor(value):
assert value inself._enum_values,
"Value %smust be one of %s" % (value,
self._enum_values)
return value
return processor
mce=MyCustomEnum([1,2,3])
processor = mce.bind_processor(sqlite.dialect())
print processor(1) #返回1
print processor(5) #返回错误,因为不是1,2,3中的数据
你甚至可以直接定义自定的TypeDecorator
class NewType(types.TypeEngine): #TypeDecorator继承自types.TypeEngine
def __init__(self, *args):
self._args = args
def get_col_spec(self): #create_table( )会用到这个方法
return ‘NEWTYPE(%s)’ % ‘,’.join(self._args)
def convert_bind_param(self, value, engine): #这个必须设置
return value
def convert_result_value(self, value, engine): #这个也必须设置
return value
2 SQL语句在交互模式下的例子:
dongwm@localhost ~ $ python
Python 2.7.3 (default, Jul 11 2012, 10:10:17)
[GCC 4.5.3] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from sqlalchemy import Table, MetaData, Column, ForeignKey,Integer, String, Unicode, DateTime
>>> metadata=MetaData()
>>> simple_table = Table( #一个简单的表结构
… ‘simple’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘col1′, Unicode(20)))
>>>
>>> stmt = simple_table.insert() #插入数据操作的实例
>>> print stmt #打印这个实例
INSERT INTO simple (id, col1) VALUES (:id, :col1) #里面包含需要替换的变量
>>> compiled_stmt = stmt.compile() #编译语句
>>> print compiled_stmt.params #转成了字典得方式
{‘id’: None, ‘col1′: None}
>>> from sqlalchemy import create_engine
>>> engine = create_engine(‘sqlite://’)
>>> simple_table.create(bind=engine) #创建table
>>> engine.execute(stmt, col1=”Foo”) #给语句添加值
/usr/lib/python2.7/site-packages/SQLAlchemy-0.7.8-py2.7-linux-i686.egg/sqlalchemy/engine/default.py:463:SAWarning: Unicode type received non-unicode bind param value.
param.append(processors[key](compiled_params[key]))
<sqlalchemy.engine.base.ResultProxy object at 0x8376c8c>
>>> metadata.bind = engine #和上面效果一样,给语句添加值
>>> stmt.execute(col1=”Bar”)
<sqlalchemy.engine.base.ResultProxy object at 0x8376f4c>
>>> stmt = simple_table.insert(values=dict(col1=”Initial value”)) #这次插入已经设置了值
>>> print stmt
INSERT INTO simple (col1) VALUES (?)
>>> compiled_stmt = stmt.compile()
>>> print compiled_stmt.params
{‘col1′: ‘Initial value’}
>>> stmt = simple_table.insert()
>>> stmt.execute(col1=”First value”)
<sqlalchemy.engine.base.ResultProxy object at 0x838832c>
>>>
>>> stmt.execute(col1=”Second value”)
<sqlalchemy.engine.base.ResultProxy object at 0x838844c>
>>> stmt.execute(col1=”Third value”) #这样一行一行插入真是费劲
<sqlalchemy.engine.base.ResultProxy object at 0x838856c>
>>> stmt.execute([dict(col1="Fourth Value"), #可以一次插入多行
... dict(col1="Fifth Value"),
... dict(col1="Sixth Value")])
<sqlalchemy.engine.base.ResultProxy object at 0x83886ac>
>>> from sqlalchemy import text
>>> stmt = simple_table.update(
… whereclause=text(“col1=’First value’”),
… values=dict(col1=’1st Value’)) #执行col1是First value的条目设置值为1st Value
>>> stmt.execute()
<sqlalchemy.engine.base.ResultProxy object at 0x838878c>
>>> stmt = simple_table.update(text(“col1=’Second value’”)) #寻找col1是Second value的条目
>>> stmt.execute(col1=’2nd Value’) #执行更新时,设置其值,想过和上面的一样
<sqlalchemy.engine.base.ResultProxy object at 0x8376f4c>
>>> stmt = simple_table.update(text(“col1=’Third value’”))
>>> print stmt
UPDATE simple SET id=?, col1=? WHERE col1=’Third value’
>>> engine.echo = True #设置打印调试日志
>>> stmt.execute(col1=’3rd value’)
2012-07-17 15:16:59,231 INFO sqlalchemy.engine.base.Engine UPDATE simple SETcol1=? WHERE col1=’Third value’
2012-07-17 15:16:59,245 INFO sqlalchemy.engine.base.Engine (’3rd value’,)
2012-07-17 15:16:59,245 INFO sqlalchemy.engine.base.Engine COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x83767ec>
>>> stmt = simple_table.delete( #删除
… text(“col1=’Second value’”))
>>> stmt.execute()
2012-07-17 15:21:03,806 INFO sqlalchemy.engine.base.Engine DELETE FROM simpleWHERE col1=’Second value’
2012-07-17 15:21:03,806 INFO sqlalchemy.engine.base.Engine ()
2012-07-17 15:21:03,806 INFO sqlalchemy.engine.base.Engine COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x8376a0c>
>>> from sqlalchemy import select
>>> stmt = select([simple_table.c.col1]) #查询col1这个字段
>>> for row in stmt.execute():
… print row
(u’Foo’,)
(u’Bar’,)
(u’1st Value’,)
(u’2nd Value’,)
(u’3rd value’,)
(u’Fourth Value’,)
(u’Fifth Value’,)
(u’Sixth Value’,)
>>> stmt = simple_table.select() #和上面的区别是这是条目全部显示
>>> for row in stmt.execute(): #这2句也可以这样表示stmt = select( simple_table])
… print row
…
(1, u’Foo’)
(2, u’Bar’)
(3, u’1st Value’)
(4, u’2nd Value’)
(5, u’3rd value’)
(6, u’Fourth Value’)
(7, u’Fifth Value’)
(8, u’Sixth Value’)
>>> x = simple_table.c.col1==”Foo”
>>> print type(x)
<class ‘sqlalchemy.sql.expression._BinaryExpression’>
>>> print x
simple.col1 = :col1_1
>>> expr = simple_table.c.col1 + “-col1″ #它还支持运算符
>>> print expr
simple.col1 || :col1_1
>>> from sqlalchemy.databases import mysql
>>> print expr.compile(dialect=mysql.MySQLDialect())
concat(simple.col1, %s) #在不同的数据库软件,效果不同
>>> from sqlalchemy import func
>>> print func.now()
now()
>>> print func.current_timestamp
<sqlalchemy.sql.expression._FunctionGenerator object at 0x83888cc>
>>> print func._(text(‘a=b’))
(a=b)
注:sqlalchemy支持in,op,startwith,endwith,between,like等运算
>>> from sqlalchemy import bindparam #自定义绑定的词
>>> stmt = select([simple_table.c.col1],
… whereclause=simple_table.c.col1==bindparam(‘test’)) #用test替换原来的col1
>>> print stmt
SELECT simple.col1
FROM simple
WHERE simple.col1 = ? #这里依然是col1
>>> print stmt.execute(test=’Foo’).fetchall()
[(u'Foo',)]
>>> stmt =simple_table.select(order_by=[simple_table.c.col1]) #更具col1,升序排序
>>> print stmt
SELECT simple.id, simple.col1
FROM simple ORDER BY simple.col1
>>> print stmt.execute().fetchall()
[(3, u'1st Value'), (4, u'2nd Value'), (5, u'3rd value'), (2, u'Bar'), (7,u'Fifth Value'), (1, u'Foo'), (6, u'Fourth Value'), (8, u'Sixth Value')]
>>> from sqlalchemy import desc
>>> stmt = simple_table.select(order_by=[desc(simple_table.c.col1)]) #根据col1,降序排序
>>> print stmt
SELECT simple.id, simple.col1
FROM simple ORDER BY simple.col1 DESC
>>> print stmt.execute().fetchall()
[(8, u'Sixth Value'), (6, u'Fourth Value'), (1, u'Foo'), (7, u'Fifth Value'),(2, u'Bar'), (5, u'3rd value'), (4, u'2nd Value'), (3, u'1st Value')]
注:distinct=True去重复,效果类似于SELECT DISTINCT
>>> stmt = simple_table.select(offset=1, limit=1) #offset设置偏移,这里就是略过第一个,返回第二个.limit设置返回多少个条目
>>> print stmt
SELECT simple.id, simple.col1
FROM simple
LIMIT ? OFFSET ?
>>> print stmt.execute().fetchall()
[(2, u'Bar')]
看下面的例子:
“Persons” 表:
Id_P | LastName | FirstName | Address | City |
1 | Adams | John | Oxford Street | London |
2 | Bush | George | Fifth Avenue | New York |
3 | Carter | Thomas | Changan Street | Beijing |
“Orders” 表:
Id_O | OrderNo | Id_P |
1 | 77895 | 3 |
2 | 44678 | 3 |
3 | 22456 | 1 |
4 | 24562 | 1 |
5 | 34764 | 65 |
现在,我们希望列出所有的人,以及他们的定购号码:
SELECT Persons.LastName, Persons.FirstName,Orders.OrderNo
FROM Persons
LEFT JOIN Orders #将orders表join进来
ON Persons.Id_P=Orders.Id_P #关系联系
ORDER BY Persons.LastName #排序
书中的例子是这样的:
SELECT store.name
FROM store
JOIN product_price ON store.id=product_price.store_id
JOIN product ON product_price.sku=product.sku
WHERE product.msrp != product_price.price;
转换成sqlalchemy语句:
>>>from_obj =store_table.join(product_price_table).join(product_table)
>>> query = store_table.select()
>>> query = query.select_from(from_obj)
>>> query = query.where(product_table.c.msrp !=product_price_table.c.price)
>>> print query
SELECT store.id, store.name
FROM store JOIN product_price ON store.id =product_price.store_id JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price
>>> print query.column(‘product.sku’)
SELECT store.id, store.name, product.sku
FROM store JOIN product_price ON store.id = product_price.store_id JOINproduct ON product.sku = product_price.sku
WHERE product.msrp != product_price.price
>>> query2 = select([store_table,product_table.c.sku],from_obj=[from_obj],whereclause=(product_table.c.msrp!=product_price_table.c.price))
>>> print query2
SELECT store.id, store.name, product.sku
FROM store JOIN product_price ON store.id = product_price.store_id JOIN productON product.sku = product_price.sku
WHERE product.msrp != product_price.price
>>> query = product_table.select(and_(product_table.c.msrp > 10.00,product_table.c.msrp < 20.00)) #范围查询
>>> print query
SELECT product.sku, product.msrp
FROM product
WHERE product.msrp > ? AND product.msrp < ?
>>> for r in query.execute():
…print r
(u’123′, Decimal(“12.34″))
>>> from sqlalchemy import intersect
>>> query0 = product_table.select(product_table.c.msrp >10.00)
>>> query1 = product_table.select(product_table.c.msrp < 20.00)
>>> query = intersect(query0, query1) #使用 intersect添加多query
>>> print query
SELECT product.sku, product.msrp
employee_table = Table(
‘employee’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘manager’, None, ForeignKey(‘employee.id’)),
Column(‘name’, String(255)))
给设定alias:
比如想实现以下SQL
SELECT employee.name
FROM employee, employee AS manager
WHERE employee.manager_id = manager.id
AND manager.name = ‘Fred’
>>> manager = employee_table.alias(‘mgr’)
>>> stmt = select([employee_table.c.name],
…
and_(employee_table.c.manager_id==manager.c.id,
…
manager.c.name==’Fred’))
>>> print stmt
SELECT employee.name
FROM employee, employee AS mgr
WHERE employee.manager_id = mgr.id AND mgr.name = ?
>>> manager = employee_table.alias() #自动alias
>>> stmt = select([employee_table.c.name],
…and_(employee_table.c.manager_id==manager.c.id,
…manager.c.name==’Fred’))
>>> print stmt
SELECT employee.name
FROM employee, employee AS employee_1
WHERE employee.manager_id = employee_1.id AND employee_1.name = ?
from sqlalchemy import types
class MyCustomEnum(types.TypeDecorator):
impl=types.Integer
def __init__(self, enum_values, *l, **kw):
types.TypeDecorator.__init__(self, *l, **kw)
self._enum_values = enum_values
def convert_bind_param(self, value, engine):
result = self.impl.convert_bind_param(value, engine)
if result not in self._enum_values:
raise TypeError, (
“Value %s must be one of %s” % (result, self._enum_values))
Application-Specific Custom Types | 63return result
def convert_result_value(self, value, engine):
‘Do nothing here’
return self.impl.convert_result_value(value, engine)
1 ORM模型的简单性简化了数据库查询过程。使用ORM查询工具,用户可以访问期望数据,而不必理解数据库的底层结构
以下是SQL语句:
region_table = Table(
‘region’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘name’, Unicode(255)))
相应的类:
class Region(object):
def __init__(self, name):
self.name = name
def __repr__(self):
return ‘<Region %s>’ % self.name
看一下在交互模式下:
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__']
>>> mapper(Region,region_table) #ORM映射
<Mapper at 0x84bdb2c; Region>
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__', '_sa_class_manager', 'id','name'] #增加了很多属性
>>> Region.id
<sqlalchemy.orm.attributes.InstrumentedAttribute object at 0x84c238c>
>>> Region.name
<sqlalchemy.orm.attributes.InstrumentedAttribute object at 0x84c254c>
>>> r0 = Region(name=”Northeast”)
>>> r1 = Region(name=”Southwest”)
>>> r0
<Region Northeast> #类能显示这样的数据是因为类定义了__repr__方法
>>> r1
<Region Southwest>
>>> from sqlalchemy.orm import clear_mappers
>>> clear_mappers() #取消映射
>>> Region.name #不再有这个属性
Traceback (most recent call last):
File “<stdin>”, line 1, in <module>
AttributeError: type object ‘Region’ has no attribute ‘name’
>>> dir(Region) #回到了原来的只有类属性
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__']
>>> r0 = Region(name=”Northeast”) #从这里开始理解ORM做了什么
>>> r1 = Region(name=”Southwest”) #实现了2个类的实例
>>> metadata.create_all(engine) #创建table
>>> Session = sessionmaker() #通过sessionmaker产生一个会话
>>> Session.configure(bind=engine) #绑定到数据库连接
>>> session = Session() #产生会话实例,让对象可以被载入或保存到数据库,而只需要访问类却不用直接访问数据库
>>> session.bind.echo = True #显示打印信息
>>> session.add(r1) #把r0,r12个实例加到会话中
>>> session.add(r0)
>>> print r0.id #因为还没有保存,数据为空
None
>>> session.flush() #提交数据到数据库
2012-07-18 10:24:07,116 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2012-07-18 10:24:07,116 INFO sqlalchemy.engine.base.Engine INSERT INTO region(name) VALUES (?)
2012-07-18 10:24:07,116 INFO sqlalchemy.engine.base.Engine (‘Southwest’,)
2012-07-18 10:24:07,117 INFO sqlalchemy.engine.base.Engine INSERT INTO region(name) VALUES (?)
2012-07-18 10:24:07,117 INFO sqlalchemy.engine.base.Engine (‘Northeast’,)
>>> print r0.id #id因为子增长,出现了
2
>>> r0.name = ‘Northwest’
>>> session.flush() #修改提交
2012-07-18 10:24:50,644 INFO sqlalchemy.engine.base.Engine UPDATE region SETname=? WHERE region.id = ?
2012-07-18 10:24:50,644 INFO sqlalchemy.engine.base.Engine (‘Northwest’, 2)
>>> print r0.name #数据库中的数据被update成了新值
Northwest
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__','__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__','__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__','__weakref__']
>>> mapper(Region, region_table, include_properties=['id']) #使用 include_properties只映射某些字段,同样还有exclude_properties
<Mapper at 0x84c26cc; Region>
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__', '_sa_class_manager', 'id'] #只多了一个”id”
>>> clear_mappers()
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__']
>>> mapper(Region, region_table, column_prefix=’_') #映射后自定义修改新属性的前缀
<Mapper at 0x84f73ac; Region>
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__', '_id', '_name','_sa_class_manager'] #id和name等前面都有了”_”
>>> clear_mappers()
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__']
>>> mapper(Region, region_table, properties=dict(
… region_name=region_table.c.name, #想把name的属性定义为region_name,因为c.name就是用Table创建的表结构的特定实例的name属性
… region_id=region_table.c.id))
<Mapper at 0x8509d2c; Region>
>>> dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__','__getattribute__', '__hash__', '__init__', '__module__', '__new__','__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__','__str__', '__subclasshook__', '__weakref__', '_sa_class_manager', 'region_id','region_name'] #id改名为region_id
>>> class Region(object): #重新定义类
… def __init__(self, name):
… self.name = name
… def __repr__(self):
… return ‘<Region %s>’ %self.name
… def _get_name(self): #这个_get和_set是为了让内置的property调用
… return self._name
… def _set_name(self, value):
… assertvalue.endswith(‘Region’),
… ‘Region names must end in “Region”‘
… self._name = value
… name=property(_get_name, _set_name) #通过property的定义,当获取成员x的值时,就会调用_get_name函数(第一个参数),当给成员x赋值时,就会调用_set_name函数(第二个参数),当删除x时,就会调用delx函数(这里没有设置)
…
>>> from sqlalchemy.orm import synonym
>>> mapper(Region, region_table, column_prefix=’_', properties=dict(
… name=synonym(‘_name’))) #首先检验_name的属性是否满足
<Mapper at 0x84f7acc; Region>
>>> s0 = Region(‘Southeast’) #没有正确结尾
Traceback (most recent call last):
File “<stdin>”, line 1, in <module>
File “<string>”, line 4, in __init__
File“/usr/lib/python2.7/site-packages/SQLAlchemy-0.7.8-py2.7-linux-i686.egg/sqlalchemy/orm/state.py”,line 98, in initialize_instance
return manager.original_init(*mixed[1:], **kwargs)
File “<stdin>”, line 3, in __init__
File “<string>”, line 1, in __set__
File “<stdin>”, line 10, in _set_name
AssertionError: Region names must end in “Region”
>>> s0 = Region(‘Southeast Region’) #正常
>>> segment_table = Table(
… ‘segment’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘lat0′, Float),
… Column(‘long0′, Float),
… Column(‘lat1′, Float),
… Column(‘long1′, Float))
>>> metadata.create_all(engine) #创建表
>>> class RouteSegment(object): #一个含有begin和end的类
… def __init__(self, begin, end):
… self.begin = begin
… self.end = end
… def __repr__(self):
… return ‘<Route %s to%s>’ % (self.begin, self.end)
…
>>> class MapPoint(object):
… def __init__(self, lat, long):
… self.coords = lat, long
… def __composite_values__(self): #返回比较后的列表或者元祖
… return self.coords
… def __eq__(self, other):
… return self.coords ==other.coords
… def __ne__(self, other):
… return self.coords !=other.coords
… def __repr__(self):
… return ‘(%s lat, %s long)’ %self.coords
…
…
>>> from sqlalchemy.orm import composite
>>> mapper(RouteSegment, segment_table, properties=dict(
… begin=composite(MapPoint, #创建多个属性
… segment_table.c.lat0,
… segment_table.c.long0),
… end=composite(MapPoint,
… segment_table.c.lat1,segment_table.c.long1)))
<Mapper at 0x86203cc; RouteSegment>
>>> work=MapPoint(33.775562,-84.29478)
>>> library=MapPoint(34.004313,-84.452062)
>>> park=MapPoint(33.776868,-84.389785)
>>> routes = [
... RouteSegment(work, library),
... RouteSegment(work, park),
... RouteSegment(library, work),
... RouteSegment(library, park),
... RouteSegment(park, library),
... RouteSegment(park, work)]
>>> for rs in routes:
… session.add(rs)
…
>>> session.flush()
>>> q = session.query(RouteSegment)
>>> print RouteSegment.begin==work
segment.lat0 = :lat0_1 AND segment.long0 = :long0_1
>>> q = q.filter(RouteSegment.begin==work)
>>> for rs in q:
… print rs
…
2012-07-18 11:12:29,360 INFO sqlalchemy.engine.base.Engine SELECT segment.id ASsegment_id, segment.lat0 AS segment_lat0, segment.long0 AS segment_long0,segment.lat1 AS segment_lat1, segment.long1 AS segment_long1
FROM segment
WHERE segment.lat0 = ? AND segment.long0 = ?
2012-07-18 11:12:29,360 INFO sqlalchemy.engine.base.Engine (33.775562,-84.29478)
<Route (33.775562 lat, -84.29478 long) to (34.004313 lat, -84.452062long)>
<Route (33.775562 lat, -84.29478 long) to (33.776868 lat, -84.389785long)>
>>> from sqlalchemy.orm import PropComparator
>>> class MapPointComparator(PropComparator): #自定义运算符继承PropComparator类
… def __lt__(self, other): #自定义小于运算结果
… return and_(*[a<b for a, bin
... zip(self.prop.columns,
... other.__composite_values__())])
…
>>> mapper(RouteSegment, segment_table, properties=dict(
… begin=composite(MapPoint,
… segment_table.c.lat0, segment_table.c.long0,
… comparator=MapPointComparator), #定义使用自定义的运算类
… end=composite(MapPoint,
… segment_table.c.lat1, segment_table.c.long1,
… comparator=MapPointComparator)))
<Mapper at 0x85b2bac; RouteSegment>
>>> product_table = Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric),
… Column(‘image’, BLOB))
>>> from sqlalchemy.orm import deferred
>>> mapper(Product, product_table, properties=dict(
… image=deferred(product_table.c.image))) #deferred意思是延迟,就是在实现 mapper 时,可以指定某些字段是 Deferred 装入的,这样象通常一样取出数据时,这些字段并不真正的从数据库中取出,只有在你真正需要时才取出,这样可以减少资源的占用和提高效率,只有在读取 image时才会取出相应的数据
<Mapper at 0x862a40c; Product>
>>> metadata.remove(product_table) #因为已经常见了表,先删除
>>> product_table = Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric),
… Column(‘image1′, Binary),
… Column(‘image2′, Binary),
… Column(‘image3′, Binary))
>>> clear_mappers() #已经映射,先取消
>>> mapper(Product, product_table, properties=dict(
… image1=deferred(product_table.c.image1,group=’images’),
… image2=deferred(product_table.c.image2,group=’images’),
… image3=deferred(product_table.c.image3,group=’images’))) #Deferred字段可以通过在 properties 中指定 group参数来表示编组情况。这样当一个组的某个
#字段被取出时, 同组的其它字段均被取出
<Mapper at 0x85b8c4c; Product>
>>> q = product_table.join( 被映射的是join了product_summary_table到product_table的结果
… product_summary_table,
… product_table.c.sku==product_summary_table.c.sku).alias(‘full_product’)
>>> class FullProduct(object): pass
…
>>> mapper(FullProduct, q)
<Mapper at 0x86709cc; FullProduct>
mapper函数的一些参数:
always_refresh =False:返回查询旧会修改内存中的值,但是populate_existing优先级高
allow_column_override =False:允许关系属性将具有相同的名称定义为一个映射列,否则名称冲突,产生异常
2 ORM的关系
1 1:N relations (1对多)
>>> mapper(Store, store_table)
<Mapper at 0x84fba4c; Store>
>>> from sqlalchemy.orm import relation
>>> mapper(Region, region_table, properties=dict(
… stores=relation(Store))) #让2个表关联,给Region添加一个属性stores,通过它联系Store来修改Store
<Mapper at 0x84f76ac; Region>
>>> r0 = Region(‘test’)
>>> session.add(r0) #先生成一条数据
>>> session.commit()
2012-07-18 13:56:26,858 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2012-07-18 13:56:26,859 INFO sqlalchemy.engine.base.Engine INSERT INTO region(name) VALUES (?)
2012-07-18 13:56:26,859 INFO sqlalchemy.engine.base.Engine (‘test’,)
2012-07-18 13:56:26,859 INFO sqlalchemy.engine.base.Engine COMMIT
>>> rgn = session.query(Region).get(1) #获取这条数据
2012-07-18 13:56:37,250 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2012-07-18 13:56:37,251 INFO sqlalchemy.engine.base.Engine SELECT region.id ASregion_id, region.name AS region_name
FROM region
WHERE region.id = ?
2012-07-18 13:56:37,251 INFO sqlalchemy.engine.base.Engine (1,)
>>> s0 = Store(name=’3rd and Juniper’) #创建一个实例
>>> rgn.stores.append(s0) #通过Region的依赖建立新的Store(其中的一个字段region_id值来着region的id字段)
2012-07-18 13:56:51,611 INFO sqlalchemy.engine.base.Engine SELECT store.id ASstore_id, store.region_id AS store_region_id, store.name AS store_name
FROM store
WHERE ? = store.region_id
2012-07-18 13:56:51,611 INFO sqlalchemy.engine.base.Engine (1,)
>>> session.flush() #保存数据库
2012-07-18 13:57:02,131 INFO sqlalchemy.engine.base.Engine INSERT INTO store(region_id, name) VALUES (?, ?)
2012-07-18 13:57:02,131 INFO sqlalchemy.engine.base.Engine (1, ’3rd andJuniper’)
注:假如2个表之间有多个外部依赖关系,需要使用primaryjoin指定:
mapper(Region, region_table, properties=dict(
stores=relation(Store,
primaryjoin=(store_table.c.region_id #判断关系来着region_id和region的id
==region_table.c.id))))
2 M:N relations(多对多)
上面有SQL语句:我复制过来:
category_table = Table(
‘category’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘level_id’, None, ForeignKey(‘level.id’)),
Column(‘parent_id’, None, ForeignKey(‘category.id’)),
Column(‘name’, String(20)))
product_table = Table(
‘product’, metadata,
Column(‘sku’, String(20), primary_key=True),
Column(‘msrp’, Numeric))
product_category_table = Table(
‘product_category’, metadata,
Column(‘product_id’, None, ForeignKey(‘product.sku’), primary_key=True),
Column(‘category_id’, None, ForeignKey(‘category.id’), primary_key=True))
可以看出来product_category_table和category_table 是多对多的关系.
>>> mapper(Category, category_table, properties=dict(
… products=relation(Product,
… secondary=product_category_table)))
<Mapper at 0x859c8cc; Category>
>>> mapper(Product, product_table, properties=dict(
… categories=relation(Category,
… secondary=product_category_table)))
<Mapper at 0x859c5cc; Product>
>>> r0=Product(’123′,’234′)
>>> session.add(r0)
>>> session.flush()
2012-07-18 14:18:06,599 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2012-07-18 14:18:06,618 INFO sqlalchemy.engine.base.Engine INSERT INTO product(sku, msrp) VALUES (?, ?)
2012-07-18 14:18:06,618 INFO sqlalchemy.engine.base.Engine (’123′, 234.0)
>>> session.query(Product).get(’123′).categories
>>> clear_mappers()
>>> mapper(Category, category_table, properties=dict(
… products=relation(Product,secondary=product_category_table,
… primaryjoin=(product_category_table.c.category_id #primaryjoin是要被映射的表和连接表的条件
… == category_table.c.id),
… secondaryjoin=(product_category_table.c.product_id #secondaryjoin是连接表和想加入的表的条件
… == product_table.c.sku))))
<Mapper at 0x84ff7cc; Category>
>>> mapper(Product, product_table, properties=dict(
… categories=relation(Category,secondary=product_category_table,
… primaryjoin=(product_category_table.c.product_id
… == product_table.c.sku),
… secondaryjoin=(product_category_table.c.category_id
… == category_table.c.id))))
<Mapper at 0x859cb8c; Product>
1:1 relations(一对一):特殊的(1:N)
还是上面的SQL:
product_table = Table(
‘product’, metadata,
Column(‘sku’, String(20), primary_key=True),
Column(‘msrp’, Numeric))
product_summary_table = Table(
‘product_summary’, metadata,
Column(‘sku’, None, ForeignKey(‘product.sku’), primary_key=True), #只有一个外联到product
Column(‘name’, Unicode(255)),
Column(‘description’, Unicode))
>>> mapper(Product, product_table, properties=dict(
… summary=relation(ProductSummary)))
KeyboardInterrupt
>>> mapper(ProductSummary, product_summary_table)
<Mapper at 0x84fbe6c; ProductSummary>
>>> mapper(Product, product_table, properties=dict(
… summary=relation(ProductSummary)))
<Mapper at 0x85bee6c; Product>
>>> prod = session.query(Product).get(’123′)
[] #product_summary_table因为product_table儿存在,浪费了
>>> mapper(ProductSummary, product_summary_table)
<Mapper at 0x84f7dec; ProductSummary>
>>> mapper(Product, product_table, properties=dict(
… summary=relation(ProductSummary,uselist=False))) #使用uselist=False就不会这样了
<Mapper at 0x860584c; Product>
>>> prod = session.query(Product).get(’123′)
>>> print prod.summary
None
>>> mapper(ProductSummary, product_summary_table)
<Mapper at 0x859ca0c; ProductSummary>
>>> mapper(Product, product_table, properties=dict(
… summary=relation(ProductSummary, uselist=False,
… backref=’product’))) #自定义自己表的函数
<Mapper at 0x860e90c; Product>
>>> prod = session.query(Product).get(’123′)
>>> prod.summary = ProductSummary(name=”Fruit”, description=”Some
… Fruit”)
>>> print prod.summary
<ProductSummary Fruit>
>>> print prod.summary.product #他的属性就是prod,可就是表本身
<Product 123>
>>> print prod.summary.product is prod
True
>>> mapper(Level, level_table, properties=dict(
… categories=relation(Category, backref=’level’)))
<Mapper at 0x860590c; Level>
>>> mapper(Category, category_table, properties=dict(
… products=relation(Product,
… secondary=product_category_table)))
<Mapper at 0x860ec8c; Category>
>>> mapper(Product, product_table, properties=dict(
… categories=relation(Category,
… secondary=product_category_table)))
<Mapper at 0x860e7ec; Product>
>>> lvl = Level(name=’Department’)
>>> cat = Category(name=’Produce’, level=lvl)
>>> session.add(lvl)
>>> session.flush()
2012-07-18 14:44:02,005 INFO sqlalchemy.engine.base.Engine INSERT INTO level(parent_id, name) VALUES (?, ?)
2012-07-18 14:44:02,005 INFO sqlalchemy.engine.base.Engine (None, ‘Department’)
2012-07-18 14:44:02,020 INFO sqlalchemy.engine.base.Engine INSERT INTO category(level_id, parent_id, name) VALUES (?, ?, ?)
2012-07-18 14:44:02,020 INFO sqlalchemy.engine.base.Engine (1, None, ‘Produce’)
>>> prod = session.query(Product).get(’123′)
>>> print prod.categories
[]
>>> print cat.products
2012-07-18 14:44:25,517 INFO sqlalchemy.engine.base.Engine SELECT product.skuAS product_sku, product.msrp AS product_msrp
FROM product, product_category
WHERE ? = product_category.category_id AND product.sku =product_category.product_id
2012-07-18 14:44:25,517 INFO sqlalchemy.engine.base.Engine (1,)
[]
>>> prod.categories.append(cat)
>>> print prod.categories
[<Category Department.Produce>]
>>> print cat.products #backref自动更新,在多对多的情况,可以使用relation函数两次,但是2个属性没有保持同步
[] #解决方法:
>>> mapper(Level, level_table, properties=dict(
…categories=relation(Category, backref=’level’)))
>>> mapper(Category, category_table, properties=dict(
…products=relation(Product, secondary=product_category_table,
… backref=’categories’))) #在Product也设置backref,就会保持同步
>>> mapper(Product, product_table)
>>> lvl = Level(name=’Department’)
>>> cat = Category(name=’Produce’, level=lvl)
>>> session.save(lvl)
>>> prod = session.query(Product).get(’123′)
>>> print prod.categories
[]
>>> print cat.products
[]
>>> prod.categories.append(cat)
>>> print prod.categories
[<Category Department.Produce>]
>>>print cat.products
[<Product 123>]
>>> from sqlalchemy.orm import backref
>>> clear_mappers()
>>> mapper(ProductSummary, product_summary_table, properties=dict(
… product=relation(Product,
… backref=backref(‘summary’, uselist=False)))) #还可以使用backref函数做一样的事情
<Mapper at 0x860aaec; ProductSummary>
>>> mapper(Product, product_table)
<Mapper at 0x85bee6c; Product>
4 Self-Referential 自我参照映射
level_table = Table(
‘level’, metadata,
Column(‘id’, Integer, primary_key=True),
Column(‘parent_id’, None, ForeignKey(‘level.id’)), #这个外联其实还是这个类的id,也就是映射了自己的对象
Column(‘name’, String(20)))
>>> mapper(Level, level_table, properties=dict(
… children=relation(Level))) #不同层次之间的父子关系,我这里指定得到”子”的属性
<Mapper at 0x860a66c; Level>
>>> mapper(Level, level_table, properties=dict(
… children=relation(Level,
… backref=backref(‘parent’,
… remote_side=[level_table.c.id])))) #remote_side指定’子’的id,local side”就是字段parent_id
<Mapper at 0x860e42c; Level>
>>> l0 = Level(‘Gender’)
>>> l1 = Level(‘Department’, parent=l0)
>>> session.add(l0)
>>> session.flush()
2012-07-18 15:07:55,810 INFO sqlalchemy.engine.base.Engine INSERT INTO level(parent_id, name) VALUES (?, ?)
2012-07-18 15:07:55,810 INFO sqlalchemy.engine.base.Engine (None, ‘Gender’) #插入l0,他没有父级
2012-07-18 15:07:55,810 INFO sqlalchemy.engine.base.Engine INSERT INTO level(parent_id, name) VALUES (?, ?)
2012-07-18 15:07:55,810 INFO sqlalchemy.engine.base.Engine (2, ‘Department’)
注 我们还能反过来用:
mapper(Level, level_table, properties=dict(
parent=relation(Level, remote_side=[level_table.c.parent_id],
backref=’children’)))
我们创建一个多引擎的例子:
Source code |
|
from sqlalchemy import create_engine
from sqlalchemy.orm import mapper, sessionmaker
from sqlalchemy import Numeric,Table, MetaData, Column, ForeignKey,Integer, String
engine1 = create_engine('sqlite://')
engine2 = create_engine('sqlite://')
metadata = MetaData()
product_table = Table(
'product', metadata,
Column('sku', String(20), primary_key=True),
Column('msrp', Numeric))
product_summary_table = Table(
'product_summary', metadata,
Column('sku', String(20), ForeignKey('product.sku'), primary_key=True),
Column('name', Unicode(255)),
Column('description', Unicode))
product_table.create(bind=engine1)
product_summary_table.create(bind=engine2)
stmt = product_table.insert()
engine1.execute(
stmt,
[dict(sku="123", msrp=12.34),
dict(sku="456", msrp=22.12),
dict(sku="789", msrp=41.44)])
stmt = product_summary_table.insert()
engine2.execute(
stmt,
[dict(sku="123", name="Shoes", description="SomeShoes"),
dict(sku="456", name="Pants", description="SomePants"),
dict(sku="789", name="Shirts", description="Some Shirts")])
这样就创建了表并且插入了一些数据
dongwm@localhost ~ $ python
Python 2.7.3 (default, Jul 11 2012, 10:10:17)
[GCC 4.5.3] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from sqlalchemy import create_engine
>>> from sqlalchemy.orm import mapper, sessionmaker
>>> from sqlalchemy import Numeric,Table, MetaData, Column,ForeignKey, Integer, String,Unicode
>>> engine1 = create_engine(‘sqlite://’)
>>> engine2 = create_engine(‘sqlite://’) #创建多个引擎
>>> metadata = MetaData()
>>> product_table = Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric))
>>> product_summary_table = Table(
… ‘product_summary’, metadata,
… Column(‘sku’, String(20), ForeignKey(‘product.sku’), primary_key=True),
… Column(‘name’, Unicode(255)),
… Column(‘description’, Unicode))
>>> product_table.create(bind=engine1)
>>> product_summary_table.create(bind=engine2)
>>> stmt = product_table.insert()
>>> engine1.execute(
… stmt,
… [dict(sku="123", msrp=12.34),
... dict(sku="456", msrp=22.12),
... dict(sku="789", msrp=41.44)])
<sqlalchemy.engine.base.ResultProxy object at 0x84ef9ec>
>>> stmt = product_summary_table.insert()
>>> engine2.execute( #用引擎2 插入数据,那么product_summary的数据就在这个引擎
… stmt,
… [dict(sku="123", name="Shoes", description="SomeShoes"),
... dict(sku="456", name="Pants", description="SomePants"),
... dict(sku="789", name="Shirts", description="SomeShirts")])
/usr/lib/python2.7/site-packages/SQLAlchemy-0.7.8-py2.7-linux-i686.egg/sqlalchemy/engine/default.py:463:SAWarning: Unicode type received non-unicode bind param value.
param.append(processors[key](compiled_params[key]))
<sqlalchemy.engine.base.ResultProxy object at 0x84e896c>
>>> class Product(object):
… def __init__(self, sku, msrp, summary=None):
… self.sku = sku
… self.msrp = msrp
… self.summary = summary
… def __repr__(self):
… return ‘<Product %s>’ %self.sku
…
>>> class ProductSummary(object):
… def __init__(self, name, description):
… self.name = name
… self.description =description
… def __repr__(self):
… return ‘<ProductSummary%s>’ % self.name
…
>>> from sqlalchemy.orm import clear_mappers,backref,relation
>>> clear_mappers()
>>> mapper(ProductSummary, product_summary_table, properties=dict(
… product=relation(Product,
… backref=backref(‘summary’, uselist=False))))
<Mapper at 0x84efa4c; ProductSummary>
>>> mapper(Product, product_table)
<Mapper at 0x84efd0c; Product>
>>> Session = sessionmaker(binds={Product:engine1, #这里绑定了2个引擎,不同orm的引擎不同
… ProductSummary:engine2})
>>> session = Session()
>>> engine1.echo = engine2.echo = True
>>> session.query(Product).all() #查询product的数据
2012-07-18 19:00:59,514 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2012-07-18 19:00:59,514 INFO sqlalchemy.engine.base.Engine SELECT product.skuAS product_sku, product.msrp AS product_msrp
FROM product
2012-07-18 19:00:59,514 INFO sqlalchemy.engine.base.Engine ()
/usr/lib/python2.7/site-packages/SQLAlchemy-0.7.8-py2.7-linux-i686.egg/sqlalchemy/types.py:215:SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively,and SQLAlchemy must convert from floating point – rounding errors and otherissues may occur. Please consider storing Decimal numbers as strings orintegers on this platform for lossless storage.
d[coltype] = rp = d['impl'].result_processor(dialect, coltype)
[<Product 123>, <Product 456>, <Product 789>]
>>> session.query(ProductSummary).all() #查询ProductSummary
2012-07-18 19:01:07,510 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2012-07-18 19:01:07,510 INFO sqlalchemy.engine.base.Engine SELECTproduct_summary.sku AS product_summary_sku, product_summary.name ASproduct_summary_name, product_summary.description AS product_summary_description
FROM product_summary
2012-07-18 19:01:07,510 INFO sqlalchemy.engine.base.Engine ()
[<ProductSummary Shoes>, <ProductSummary Pants>, <ProductSummaryShirts>]
>>> from sqlalchemy.orm.shard import ShardedSession #使用ShardedSession对会话水平分区,根据需求把数据分开
>>> product_table = Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric))
>>> metadata.create_all(bind=engine1)
>>> metadata.create_all(bind=engine2)
>>> class Product(object):
… def __init__(self, sku, msrp):
… self.sku = sku
… self.msrp = msrp
… def __repr__(self):
… return ‘<Product %s>’ %self.sku
…
>>> clear_mappers()
>>> product_mapper = mapper(Product, product_table)
>>> def shard_chooser(mapper, instance, clause=None): #返回包含映射和实例的行的分区ID
… if mapper is not product_mapper: #非设定的orm映射叫做odd
… return ‘odd’
… if (instance.sku #数据为偶数也叫做even
… and instance.sku[0].isdigit()
… and int(instance.sku[0]) % 2== 0):
… return ‘even’
… else:
… return ‘odd’ #否则叫做odd
…
>>> def id_chooser(query, ident): 根据查询和映射类的主键返回对象想通过查询驻留的shard ID列表
… if query.mapper is not product_mapper:
… return ['odd']
… if (ident
… and ident[0].isdigit()
… and int(ident[0]) % 2 == 0):
… return ['even']
… return ['odd']
…
>>> def query_chooser(query): #返回可选的shard ID列表
… return ['even', 'odd']
…
>>> Session = sessionmaker(class_=ShardedSession)
>>> session = Session(
… shard_chooser=shard_chooser,
… id_chooser=id_chooser,
… query_chooser=query_chooser,
… shards=dict(even=engine1,
… odd=engine2))
>>> products = [ Product('%d%d%d' % (i,i,i), 0.0)
... for i in range(10) ]
>>> for p in products:
… session.add(p)
…
>>> session.flush()
>>> for row in engine1.execute(product_table.select()):
… print row
…
2012-07-18 19:11:19,811 INFO sqlalchemy.engine.base.Engine SELECT product.sku,product.msrp
FROM product
2012-07-18 19:11:19,811 INFO sqlalchemy.engine.base.Engine ()
(u’000′, Decimal(’0E-10′)) #偶数数据写在engine1
(u’222′, Decimal(’0E-10′))
(u’444′, Decimal(’0E-10′))
(u’666′, Decimal(’0E-10′))
(u’888′, Decimal(’0E-10′))
>>> for row in engine2.execute(product_table.select()):
… print row
…
2012-07-18 19:11:40,098 INFO sqlalchemy.engine.base.Engine SELECT product.sku,product.msrp
FROM product
2012-07-18 19:11:40,099 INFO sqlalchemy.engine.base.Engine ()
(u’111′, Decimal(’0E-10′)) #奇数数据写在engine1
(u’333′, Decimal(’0E-10′))
(u’555′, Decimal(’0E-10′))
(u’777′, Decimal(’0E-10′))
(u’999′, Decimal(’0E-10′))
>>> session.query(Product).all()
2012-07-18 19:12:36,130 INFO sqlalchemy.engine.base.Engine SELECT product.skuAS product_sku, product.msrp AS product_msrp
FROM product
2012-07-18 19:12:36,130 INFO sqlalchemy.engine.base.Engine ()
2012-07-18 19:12:36,131 INFO sqlalchemy.engine.base.Engine SELECT product.skuAS product_sku, product.msrp AS product_msrp
FROM product
2012-07-18 19:12:36,131 INFO sqlalchemy.engine.base.Engine ()
[<Product 123>, <Product 456>, <Product 789>, <Product000>, <Product 222>, <Product 444>, <Product 666>,<Product 888>, <Product 111>, <Product 333>, <Product555>, <Product 777>, <Product 999>]
from sqlalchemy import create_engine
from sqlalchemy.orm import mapper, sessionmaker
from datetime import datetime
from sqlalchemy import Numeric,Table, MetaData, Column, ForeignKey, Integer,String, Unicode, DateTime
from sqlalchemy import types
from sqlalchemy.databases import sqlite
engine1 = create_engine(‘sqlite://’)
engine2 = create_engine(‘sqlite://’)
metadata = MetaData()
product_table = Table(
‘product’, metadata,
Column(‘sku’, String(20), primary_key=True),
Column(‘msrp’, Numeric))
product_summary_table = Table(
‘product_summary’, metadata,
Column(‘sku’, String(20), ForeignKey(‘product.sku’), primary_key=True),
Column(‘name’, Unicode(255)),
Column(‘description’, Unicode))
product_table.create(bind=engine1)
product_summary_table.create(bind=engine2)
stmt = product_table.insert()
engine1.execute(
stmt,
[dict(sku="123", msrp=12.34),
dict(sku="456", msrp=22.12),
dict(sku="789", msrp=41.44)])
stmt = product_summary_table.insert()
engine2.execute(
stmt,
[dict(sku="123", name="Shoes", description="SomeShoes"),
dict(sku="456", name="Pants", description="SomePants"),
dict(sku="789", name="Shirts", description="SomeShirts")])
本文主要说删除
metadata.drop_all(engine) #删除某引擎的全部表
metadata.remove(test_table) #删除某一个table
clear_mappers() #取消所有的映射
在relation中有一个参数cascade,它是基于session的操作,包括把对象放入session,从session删除对象等,如果 指定cascade=”all”表示做的任何session操作给映射类都能很好的工作,默认包含save-update, merge
mapper(ParentClass, parent, properties=dict(
children=relation(ChildClass, backref=’parent’,
cascade=’all,delete-orphan’) )) #delete-orphan表示如果曾经是子类(childclass)实例但是却没有和父类连接的情况下,假如要删除这个子类,而不想挂空父类引用了的实例,
额看个例子就懂了:
photo = Table(
… ‘photo’, metadata,
… Column(‘id’, Integer, primary_key=True))
tag = Table(
… ‘tag’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘photo_id’, None, ForeignKey(‘photo.id’)),
… Column(‘tag’, String(80)))
class Photo(object):
… pass
…
class Tag(object):
… def __init__(self, tag):
… self.tag = tag
…
mapper(Photo, photo, properties=dict(
… tags=relation(Tag, backref=’photo’, cascade=”all”)))
<Mapper at 0x851504c; Photo>
>>> mapper(Tag, tag)
<Mapper at 0x8515dac; Tag>
>>> p1 = Photo()
>>> p2 = Photo()
>>> p1.tags = [Tag(tag='foo'),Tag(tag='bar'),Tag(tag='baz')]
>>> p2.tags = [Tag(tag='foo'),Tag(tag='bar'),Tag(tag='baz')]
>>> session.add(p1)
>>> session.add(p2)
>>> session.flush()
>>> for t in session.query(Tag):
… print t.id,t.photo_id, t.tag
…
1 1 foo #出现以下关联数据
2 1 bar
3 1 baz
4 2 foo
5 2 bar
6 2 baz
>>> session.delete(session.query(Photo).get(1)) #删除一个tag的数据
>>> session.flush()
>>> for t in session.query(Tag):
… print t.id, t.photo_id, t.tag
…
4 2 foo #他会删除关联所有t.photo_id为1的数据,在这里relation(ChildClass, backref=’parent’,cascade=’all,delete-orphan’)指定delete-orphan没什么,关键看下面
5 2 bar
6 2 baz
>>> p3 = session.query(Photo).get(2)
>>> del p3.tags[0] #如果我只是删除关联点…
>>> session.flush()
>>> for t in session.query(Tag):
… print t.id, t.photo_id, t.tag
…
4 None foo #关联点photo_id成了none,但是条目存在 –他不会影响其它关联表
5 2 bar
6 2 baz
>>> p3 = session.query(Photo).get(2) #假如没有设置delete-orphan
>>> del p3.tags[0]
>>> session.flush()
>>> for t in session.query(Tag):
… print t.id, t.photo_id, t.tag
5 2 bar #自动删除了关联的其它表的项
6 2 baz
注:可用的cascade参数包含:
- save-update -我的理解是调用session.add()会自动将项目添加到相应级联关系上,也适用于已经从关系中删除的项目嗨没有来得及刷新的情况
- merge – 它是session.merge的实现,复制状态到具有相同标识符的持久化实例的实例,如果没有持久的实例和当前session相关联,返回的持久化实例。如果给定的实例未保存,他会保存一个副本,并返回这个副本作为一个新的持久化实例
- expunge – 从session中删除实例
- delete – 标记一个实例被删除,执行flush()会执行删除操作
- delete-orphan-如果子类从母类删除,标记之,但是不影响母类
- refresh-expire – 定期刷新在给定的实例的属性,查询并刷新数据库
- all – 以上全部属性的集合:“save-update,merge, refresh-expire, expunge, delete
· 本文主要是ORM的sission查询和更新
· session负责执行内存中的对象和数据库表之间的同步工作,创建session可以这样:
· Session =sessionmaker(bind=engine) #sqlalchemy.orm.session.Session类有很多参数,使用sessionmaker是为了简化这个过程
· 或者:
Session = sessionmaker()
Session.configure(bind=engine)
· 注:sessionmaker的参数:
autoflush=True #为True时,session将在执行session的任何查询前自动调用flush()。这将确保返回的结果
· transactional=False #为True时,session将自动使用事务commit
twophase=False #当处理多个数据库实例,当使用flush()但是没有提交事务commit时,给每个数据库一个标识,使整个事务回滚
· 创建session,添加数据的例子(以前也出现过很多次了)
dongwm@localhost ~ $ python
Python 2.7.3 (default, Jul 11 2012, 10:10:17)
[GCC 4.5.3] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from sqlalchemy import *
>>> from sqlalchemy.orm import *
>>> engine = create_engine(‘sqlite://’)
>>> metadata = MetaData(engine)
>>> account_table = Table(
… ‘account’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘balance’, Numeric))
>>> class Account(object): pass
…
>>> mapper(Account, account_table)
<Mapper at 0x84e6f2c; Account>
>>> account_table.create()
>>> a = Account()
>>> a.balance = 100.00
>>> Session = sessionmaker(bind=engine)
>>> session = Session()
>>> session.add(a)
>>> session.flush()
>>> session.delete(a) #自动删除 account_table相应条目,但是在1:N和M:N关系中不会自动删除它的级联关系
>>> session.flush()
· 注:session的对象状态:
· Transient:短暂的,主要指内存中的对象
· Pending:挂起的,这样的对象准备插入数据库,等执行了flush就会插入
· Persistent:持久的
· Detached:对象在数据库里面有记录,但是不属于session
· >>>make_transient(a) #因为标识了已删除,恢复a的状态
>>> session.add(a) #重新添加
>>> session.flush()
>>> query = session.query(Account)
>>> print query
SELECT account.id AS account_id, account.balance AS account_balance
FROM account
>>> for obj in query:
… print obj
…
<__main__.Account object at 0x84eef0c>
· >>> query.all() #查询所有
[<__main__.Account object at 0x84eef0c>]
>>> query = query.filter(Account.balance > 10.00) #filter过滤
>>> for obj in query:
… print obj.balance
…
· 100.00
· >>> for i insession.query(Account).filter_by(balance=100.00 ): #通过条件过滤
… print i
>>> query = session.query(Account)
>>> query = query.from_statement(‘select *from account wherebalance=:bac’) #通过带通配符的SQL语句其中:bac标识这个参数是bac
>>> query = query.params(bac=’100.00′) #根据bac指定值寻找
>>> print query.all()
[<__main__.Account object at 0x84eef0c>]
· 本地session
· >>> Session =scoped_session(sessionmaker( #设置一个本地的共享session
… bind=engine, autoflush=True))
>>> session = Session()
>>> session2 = Session()
>>> session is session2 #他们是同一个
True
· >>> a = Account()
>>> a.balance = 100.00
>>> Session.add(a) #注意 这是的’S'是大写
>>> Session.flush()
>>> b = Account()
>>> a.balance = 200.00
>>> session.add(a) #其实他们是一个共享的session 名字都可以
>>> session.flush()
>>> print session.query(Account).all() #查询到了2个
[<__main__.Account object at 0x851be0c>, <__main__.Account object at0x84f7d6c>]
· 注:这样的映射mapper也可以这样是用:
· mapper(Product, product_table,properties=dict(
categories=relation(Category, secondary=product_category_table,
backref=’products’)))
· Session.mapper(Product,product_table, properties=dict(
categories=relation(Category, secondary=product_category_table,
backref=’products’))) #它的优点是可以初始化参数
· 本文主要是面向对象的继承映射到关系数据库表的方法
· >>> classProduct(object):
… def __init__(self, sku, msrp):
… self.sku = sku
… self.msrp = msrp
… def __repr__(self):
… return ‘<%s %s>’ % (
… self.__class__.__name__, self.sku)
…
>>> class Clothing(Product):
… def __init__(self, sku, msrp, clothing_info):
… Product.__init__(self, sku,msrp) #继承了Product
… self.clothing_info =clothing_info
…
>>> class Accessory(Product):
… def __init__(self, sku, msrp, accessory_info):
… Product.__init__(self, sku,msrp) #继承了Product
… self.accessory_info =accessory_info
也就是这样的意思:
·
· 这个单表继承中(如下图,黑色的表示没有被映射):
·
· 从创建表结构是这样:
· >>> product_table =Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric),
… Column(‘clothing_info’, String),
… Column(‘accessory_info’, String),
… Column(‘product_type’, String(1), nullable=False)) #一个新的字段
>>> mapper(
… Product, product_table,
… polymorphic_on=product_table.c.product_type, #映射继承层次结构使用polymorphic_on表示继承在product_type字段,值是polymorphic_identity指定的标识
… polymorphic_identity=’P') #标识继承 Product ,父类
<Mapper at 0x85833ec; Product>
>>> mapper(Clothing, inherits=Product,
… polymorphic_identity=’C') #标识继承Clothingproduct
<Mapper at 0x858362c; Clothing>
>>>
>>> mapper(Accessory, inherits=Product, #继承至Product
… polymorphic_identity=’A') #标识继承Accessory
<Mapper at 0x8587d8c; Accessory>
>>> products = [ #创建一些产品
... Product('123', 11.22),
... Product('456', 33.44),
... Clothing('789', 123.45, "Nice Pants"),
... Clothing('111', 125.45, "Nicer Pants"),
... Accessory('222', 24.99, "Wallet"),
... Accessory('333', 14.99, "Belt") ]
>>> Session = sessionmaker()
>>> session = Session()
>>> for p in products:
… session.add(p)
…
>>> session.flush()
>>> print session.query(Product).all() #全部都有
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing111>, <Accessory 222>, <Accessory 333>]
>>> print session.query(Clothing).all() #只显示2个
[<Clothing 789>, <Clothing 111>]
>>> print session.query(Accessory).all() #只显示2个,是不是上面的映射效果和创建3个类而分别orm好的多呢?
[<Accessory 222>, <Accessory 333>]
· >>> for row inproduct_table.select().execute(): #从父类库查询,所有数据都有,只是product_type不同
… print row
…
(u’123′, Decimal(’11.2200000000′), None, None, u’P')
(u’456′, Decimal(’33.4400000000′), None, None, u’P')
(u’789′, Decimal(’123.4500000000′), u’Nice Pants’, None, u’C')
(u’111′, Decimal(’125.4500000000′), u’Nicer Pants’, None, u’C')
(u’222′, Decimal(’24.9900000000′), None, u’Wallet’, u’A')
(u’333′, Decimal(’14.9900000000′), None, u’Belt’, u’A')
· 具体的映射见下图:
·
· 查询一个没有的不存在的映射:
· >>> printsession.query(Accessory)[0].clothing_info
None
· 具体表的继承
· 每个表包含的数据量,需要实现它的类;没有浪费的空间
· >>>metadata.remove(product_table)
>>> product_table = Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric))
>>> clothing_table = Table(
… ‘clothing’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric),
… Column(‘clothing_info’, String))
>>>
>>> accessory_table = Table(
… ‘accessory’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric),
… Column(‘accessory_info’, String))
>>>
摄像我们想要获取Product’sku’是222的数据(没有其他额外的工作),我们不得不层次型的查询每个类,请看这个例子:
· >>> punion =polymorphic_union(
… dict(P=product_table,
… C=clothing_table,
… A=accessory_table),
… ‘type_’)
>>>
>>> print punion
SELECT accessory.sku, accessory.msrp, accessory.accessory_info, CAST(NULL ASVARCHAR) AS clothing_info, ‘A’ AS type_
FROM accessory UNION ALL SELECT product.sku, product.msrp, CAST(NULL ASVARCHAR) AS accessory_info, CAST(NULL AS VARCHAR) AS clothing_info, ‘P’ AStype_
FROM product UNION ALL SELECT clothing.sku, clothing.msrp, CAST(NULL ASVARCHAR) AS accessory_info, clothing.clothing_info, ‘C’ AS type_
FROM clothing
现在我们就有了一个很好的标记了(C,A,P)
· >>> mapper(
… Product, product_table, with_polymorphic=(‘*’,punion), #使用with_polymorphic=(‘*’, punion)的方式映射父类,指定不同表选择,实现多态,并且提高了性能(只select了一次)
… polymorphic_on=punion.c.type_,
… polymorphic_identity=’P')
<Mapper at 0x8605b6c; Product>
>>> mapper(Clothing, clothing_table, inherits=Product,
… polymorphic_identity=’C',
… concrete=True)
<Mapper at 0x84f1bac; Clothing>
>>> mapper(Accessory, accessory_table, inherits=Product,
… polymorphic_identity=’A',
… concrete=True)
<Mapper at 0x858770c; Accessory>
· >>> session.query(Product).get(’222′)
<Accessory 222>
· 本文主要是讲关于sqlalchemy的扩展
· 扩展其实就是一些外部的插件,比如sqlsoup,associationproxy,declarative,horizontal_shard等等
· 1 declarative
· 假如想要数据映射,以前的做法是:
Source code |
|
· from sqlalchemy importcreate_engine
· from sqlalchemy import Column,MetaData, Table
· from sqlalchemy import Integer,String, ForeignKey
· from sqlalchemy.orm importmapper, sessionmaker
· class User(object): #简单类
· def __init__(self, name, fullname,password):
· self.name = name
· self.fullname = fullname
· self.password = password
· def __repr__(self):
· return "<User('%s','%s','%s')>" % (self.name, self.fullname, self.password)
· metadata = MetaData()
· users_table = Table('users',metadata,
· Column('user_id', Integer,primary_key=True),
· Column('name', String),
· Column('fullname', String),
· Column('password', String)
· )
· email_table = Table('email',metadata,
· Column('email_id', Integer,primary_key=True),
· Column('email_address',String),
· Column('user_id', Integer,ForeignKey('users.user_id'))
· )
· metadata.create_all(engine)
· mapper(User, users_table) #映射
· 但是我们可以该换风格,可以用这样的方法:
Source code |
|
· from sqlalchemy import Column,Integer, String, ForeignKey
· from sqlalchemy importcreate_engine
· from sqlalchemy.ext.declarativeimport declarative_base
· from sqlalchemy.orm importbackref, mapper, relation, sessionmaker
· Base = declarative_base()
· class User(Base):
· __tablename__ = "users" #设定接收映射的表名
· id = Column(Integer, primary_key=True) #将表结构写到类里面
· name = Column(String)
· fullname = Column(String)
· password = Column(String)
· def __init__(self, name, fullname,password):
· self.name = name
· self.fullname = fullname
· self.password = password
· def __repr__(self):
· return "<User('%s','%s','%s')>" % (self.name, self.fullname, self.password)
· class Address(Base):
· __tablename__ = "addresses"
· id = Column(Integer, primary_key=True)
· email_address = Column(String,nullable=False)
· user_id = Column(Integer,ForeignKey('users.id'))
· user = relation(User,backref=backref('addresses', order_by=id)) #创建双向关系,标识以user的id为连接,也就是说:Address到User是多对一,User到Address是一对多
· def __init__(self, email_address):
· self.email_address = email_address
· def __repr__(self):
· return"<Address('%s')>" % self.email_address
· engine =create_engine("sqlite:///tutorial.db", echo=True)
· users_table = User.__table__ #获取User表对象句柄
· metadata = Base.metadata #获取metadata句柄
· metadata.create_all(engine)
· 下面具体说:
· engine =create_engine(‘sqlite://’) #创建引擎
Base.metadata.create_all(engine) #常见表
Base.metadata.bind = create_engine(‘sqlite://’) #绑定
Base = declarative_base(bind=create_engine(‘sqlite://’)) #绑定引擎
mymetadata = MetaData()
Base = declarative_base(metadata=mymetadata) #设定元数据设定简单关系:
class User(Base):
__tablename__ = ‘users’id = Column(Integer, primary_key=True)
name = Column(String(50))
addresses = relationship(“Address”, backref=”user”) #relationship其实就是relation的全称
· classAddress(Base):
__tablename__ = ‘addresses’
· id =Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey(‘users.id’))
设定多对多关系:
keywords = Table(
‘keywords’, Base.metadata,
Column(‘author_id’, Integer, ForeignKey(‘authors.id’)),
Column(‘keyword_id’, Integer, ForeignKey(‘keywords.id’))
)
class Author(Base):
__tablename__ = ‘authors’
id = Column(Integer, primary_key=True)
keywords = relationship(“Keyword”, secondary=keywords)
定义SQL表达式:
class MyClass(Base):
__tablename__ = ‘sometable’
__table_args__ = {‘mysql_engine’:'InnoDB’} #名字,映射类,元数据之外的指定需要使用__table_args__
· 或者:
class MyClass(Base):
__tablename__ = ‘sometable’
__table_args__ = (
ForeignKeyConstraint(['id'], ['remote_table.id']), #元组方式
UniqueConstraint(‘foo’),
)
· 或者:
class MyClass(Base):
__tablename__ = ‘sometable’
__table_args__ = (
ForeignKeyConstraint(['id'], ['remote_table.id']),
UniqueConstraint(‘foo’),
{‘autoload’:True} #最后的参数可以用字典 想想*argsand **kwargs
)
使用混合式:
class MyClass(Base):
__table__ = Table(‘my_table’, Base.metadata, #在__table__里指定表结构
Column(‘id’, Integer, primary_key=True),
Column(‘name’, String(50))
)
2 sqlsoup(在sqlalchemy0.8版本后他变成了一个独立的项目,http://pypi.python.org/pypi/sqlsoup,
· 而我使用gentoo提供的0.7.8版本,以下的程序import部分可能不适用更高版本,而需要import sqlsoup)
· sqlsoup提供一个方便的访问数据库的接方式,而无需创建类,映射数据库
· 还是看例子的对比:
· 用以前的方式创建一个数据库并且插入一些数据:
· >>> fromsqlalchemy import *
>>> engine = create_engine(‘sqlite:///dongwm.db’)
>>> metadata = MetaData(engine)
>>> product_table = Table(
… ‘product’, metadata,
… Column(‘sku’, String(20), primary_key=True),
… Column(‘msrp’, Numeric))
>>> store_table = Table(
… ‘store’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘name’, Unicode(255)))
>>> product_price_table = Table(
… ‘product_price’, metadata,
… Column(‘sku2′, None, ForeignKey(‘product.sku’), primary_key=True),
… Column(‘store_id’, None, ForeignKey(‘store.id’), primary_key=True),
… Column(‘price’, Numeric, default=0))
>>> metadata.create_all()
>>> stmt = product_table.insert()
>>> stmt.execute([dict(sku="123", msrp=12.34),
... dict(sku="456", msrp=22.12),
... dict(sku="789", msrp=41.44)])
<sqlalchemy.engine.base.ResultProxy object at 0x84fbdcc>
>>> stmt = store_table.insert()
>>> stmt.execute([dict(name="Main Store"),
... dict(name="Secondary Store")])
<sqlalchemy.engine.base.ResultProxy object at 0x850068c>
>>> stmt = product_price_table.insert()
>>> stmt.execute([dict(store_id=1, sku="123"),
... dict(store_id=1, sku2="456"),
... dict(store_id=1, sku2="789"),
... dict(store_id=2, sku2="123"),
... dict(store_id=2, sku2="456"),
... dict(store_id=2, sku2="789")])
<sqlalchemy.engine.base.ResultProxy object at 0x85008cc>
创建插入完毕,然后我们用sqlsoup连接操作:
· >>> fromsqlalchemy.ext.sqlsoup import SqlSoup
>>> db = SqlSoup(‘sqlite:///dongwm.db’) #连接一个存在的数据库
>>> print db.product.all() #打印结果
[MappedProduct(sku=u'123',msrp=Decimal('12.3400000000')),MappedProduct(sku=u'456',msrp=Decimal('22.1200000000')),MappedProduct(sku=u'789',msrp=Decimal('41.4400000000'))]
>>> print db.product.get(’123′) #是不是比session.query(Product)简单呢?
MappedProduct(sku=u’123′,msrp=Decimal(’12.3400000000′))
· 注:假如想创建一个数据库: db = SqlSoup(‘sqlite:///:memory:’)
· >>>newprod = db.product.insert(sku=’111′, msrp=22.44) #没有使用数据映射的插入
>>> db.flush()
>>> db.clear() #调用底层,清除所有session实例,它是session.expunge_all的别名
>>> db.product.all()
[MappedProduct(sku=u'123',msrp=Decimal('12.3400000000')),MappedProduct(sku=u'456',msrp=Decimal('22.1200000000')),MappedProduct(sku=u'789',msrp=Decimal('41.4400000000')),MappedProduct(sku=u'111',msrp=Decimal('22.4400000000'))] #新条目已经存在了
#MappedProduct使用__getattr__将无法识别的属性和访问方法转发到它的query属性,它还提供了一些数据处理功能用于更新
· >>> fromsqlalchemy import or_, and_, desc
>>> where = or_(db.product.sku==’123′, db.product.sku==’111′)
>>> db.product.filter(where).order_by(desc(db.product.msrp)).all() #这样使用多条件过滤,降序排练
[MappedProduct(sku='111',msrp=22.44), MappedProduct(sku=u'123',msrp=Decimal('12.3400000000'))]
· >>> join1= db.join(db.product, db.product_price, isouter=True) #关联2个表, isouter=True确保LEFT OUTER(还没理解)
>>> join1.all()
[MappedJoin(sku=u'123',msrp=Decimal('12.3400000000'),sku2=u'123',store_id=1,price=Decimal('0E-10')), #这个字段包含了2个表的相应字段
MappedJoin(sku=u'123',msrp=Decimal('12.3400000000'),sku2=u'123',store_id=2,price=Decimal('0E-10')),MappedJoin(sku=u'456',msrp=Decimal('22.1200000000'),sku2=u'456',store_id=1,price=Decimal('0E-10')),MappedJoin(sku=u'456',msrp=Decimal('22.1200000000'),sku2=u'456',store_id=2,price=Decimal('0E-10')),MappedJoin(sku=u'789',msrp=Decimal('41.4400000000'),sku2=u'789',store_id=1,price=Decimal('0E-10')),MappedJoin(sku=u'789',msrp=Decimal('41.4400000000'),sku2=u'789',store_id=2,price=Decimal('0E-10')),MappedJoin(sku=u'111',msrp=Decimal('22.4400000000'),sku2=None,store_id=None,price=None)]
>>> join2 = db.join(join1, db.store, isouter=True) #将store表也关联进来(因为也有一个外键),就是关联三个表
>>> join2.all()
[MappedJoin(sku=u'123',msrp=Decimal('12.3400000000'),sku2=u'123',store_id=1,price=Decimal('0E-10'),id=1,name=u'MainStore'),MappedJoin(sku=u'123',msrp=Decimal('12.3400000000'),sku2=u'123',store_id=2,price=Decimal('0E-10'),id=2,name=u'SecondaryStore'), MappedJoin(sku=u'456',msrp=Decimal('22.1200000000'),sku2=u'456',store_id=1,price=Decimal('0E-10'),id=1,name=u'MainStore'),MappedJoin(sku=u'456',msrp=Decimal('22.1200000000'),sku2=u'456',store_id=2,price=Decimal('0E-10'),id=2,name=u'SecondaryStore'), MappedJoin(sku=u'789',msrp=Decimal('41.4400000000'),sku2=u'789',store_id=1,price=Decimal('0E-10'),id=1,name=u'MainStore'),MappedJoin(sku=u'789',msrp=Decimal('41.4400000000'),sku2=u'789',store_id=2,price=Decimal('0E-10'),id=2,name=u'SecondaryStore'), MappedJoin(sku=u'111',msrp=Decimal('22.4400000000'),sku2=None,store_id=None,price=None,id=None,name=None)]
>>> join3 = db.with_labels(join1) #根据原籍标记,比如sku会说出:product_sku,告诉你它来着product表,但是指定了jion1,就不会标识关于store的表
>>> join3.first()
MappedJoin(product_sku=u’123′,product_msrp=Decimal(’12.3400000000′),product_price_sku2=u’123′,product_price_store_id=1,product_price_price=Decimal(’0E-10′))
>>> db.with_labels(join2).first()
MappedJoin(product_sku=u’123′,product_msrp=Decimal(’12.3400000000′),product_price_sku2=u’123′,product_price_store_id=1,product_price_price=Decimal(’0E-10′),store_id=1,store_name=u’MainStore’)
>>> labelled_product = db.with_labels(db.product)
>>> join4 = db.join(labelled_product, db.product_price, isouter=True)
>>> join4.first()
MappedJoin(product_sku=u’123′,product_msrp=Decimal(’12.3400000000′),sku2=u’123′,store_id=1,price=Decimal(’0E-10′))
· >>>db.clear()
>>> join5 = db.join(db.product, db.product_price)
>>> s = select([db.product._table,
... func.avg(join5.c.price).label('avg_price')], #添加一个字段计算产品(product)的price平均值,字段名为avg_price
… from_obj=[join5._table],
… group_by=[join5.c.sku])
>>> s = s.alias(‘products_with_avg_price’) #它是fromsqlalchemy import alias; a = alias(self, name=name)的简写
>>> products_with_avg_price = db.map(s, primary_key=[join5.c.sku]) #因为没有映射到表或者join,需要指定如何找到主键
>>> products_with_avg_price.all()
[MappedJoin(sku=u'123',msrp=Decimal('12.3400000000'),avg_price=0.0),MappedJoin(sku=u'456',msrp=Decimal('22.1200000000'),avg_price=0.0),MappedJoin(sku=u'789',msrp=Decimal('41.4400000000'),avg_price=0.0)]
>>> db.product_price.first().price = 50.00
>>> db.flush()
>>> products_with_avg_price.all()
[MappedJoin(sku=u'123',msrp=Decimal('12.3400000000'),avg_price=0.0),MappedJoin(sku=u'456',msrp=Decimal('22.1200000000'),avg_price=0.0),MappedJoin(sku=u'789',msrp=Decimal('41.4400000000'),avg_price=0.0)]
>>> db.products_with_avg_price = products_with_avg_price #保存映射到db,方便重用
>>> msrp=select([db.product.c.msrp],
… db.product.sku==db.product_price.sku2) #获取sku和sku2相等时候msrp的值
>>> db.product_price.update( #更新数据
… values=dict(price=msrp),synchronize_session=False) #设置price这个字段值为上面对应的msrp
· 6
>>> db.product_price.all()
[MappedProduct_price(sku2=u'123',store_id=1,price=Decimal('12.3400000000')),MappedProduct_price(sku2=u'456',store_id=1,price=Decimal('22.1200000000')),MappedProduct_price(sku2=u'789',store_id=1,price=Decimal('41.4400000000')),MappedProduct_price(sku2=u'123',store_id=2,price=Decimal('12.3400000000')),MappedProduct_price(sku2=u'456',store_id=2,price=Decimal('22.1200000000')),MappedProduct_price(sku2=u'789',store_id=2,price=Decimal('41.4400000000'))]
· 3 associationproxy
· associationproxy用于创建一个读/写整个关系的目标属性
· 看一个例子就懂了:
· >>>user_table = Table(
… ‘user’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘user_name’, String(255), unique=True),
… Column(‘password’, String(255)))
>>> brand_table = Table(
… ‘brand’, metadata,
… Column(‘id’, Integer, primary_key=True),
… Column(‘name’, String(255)))
>>> sales_rep_table = Table(
… ‘sales_rep’, metadata,
… Column(‘brand_id’, None, ForeignKey(‘brand.id’), primary_key=True),
… Column(‘user_id’, None, ForeignKey(‘user.id’), primary_key=True),
… Column(‘commission_pct’, Integer, default=0))
>>> class User(object): pass
…
>>> class Brand(object): pass
…
>>> class SalesRep(object): pass
…
>>> mapper(User, user_table, properties=dict(
… sales_rep=relation(SalesRep, backref=’user’,uselist=False)))
<Mapper at 0x87472ec; User>
>>> mapper(Brand, brand_table, properties=dict(
… sales_reps=relation(SalesRep, backref=’brand’)))
<Mapper at 0x874770c; Brand>
>>> mapper(SalesRep, sales_rep_table)
<Mapper at 0x874768c; SalesRep>
· ORM完成,但是假如我们想要brand(品牌)类对象的一个所有SalesReps for Brand(品牌的销售代表)的User列表属性,可以这样:
· classBrand(object):
@property
def users(self):
return [ sr.user for sr in self.sales_reps ]
· 但是不方便增加删除,而使用association_proxy:
· >>> fromsqlalchemy.ext.associationproxy import association_proxy
>>> class Brand(object):
… users=association_proxy(‘sales_reps’, ‘user’)
…
· 或者:
· mapper(Brand,brand_table, properties=dict(
sales_reps=relation(SalesRep, backref=’brand’)))
Brand.users=association_proxy(‘sales_reps’, ‘user’)#优点是维持了域对象
· 我们需要修改类,增加属性:
· classUser(object):
def __init__(self, user_name=None, password=None):
self.user_name=user_name
self.password=password
· classBrand(object):
def __init__(self, name=None):
self.name = name
· classSalesRep(object):
def __init__(self, user=None, brand=None, commission_pct=0):
self.user = user
self.brand = brand
self.commission_pct=commission_pct
· 看下面的效果:
· >>> b =Brand(‘Cool Clothing’)
>>> session.add(b)
>>> u = User(‘rick’, ‘foo’)
>>> session.add(u)
>>> session.flush()
2012-07-20 12:22:33,191 INFO sqlalchemy.engine.base.Engine INSERT INTO user(user_name, password) VALUES (?, ?)
2012-07-20 12:22:33,191 INFO sqlalchemy.engine.base.Engine (‘rick’, ‘foo’)
2012-07-20 12:22:33,191 INFO sqlalchemy.engine.base.Engine INSERT INTO brand(name) VALUES (?)
2012-07-20 12:22:33,191 INFO sqlalchemy.engine.base.Engine (‘Cool Clothing’,)
>>> b.users
2012-07-20 12:22:42,135 INFO sqlalchemy.engine.base.Engine SELECTsales_rep.brand_id AS sales_rep_brand_id, sales_rep.user_id ASsales_rep_user_id, sales_rep.commission_pct AS sales_rep_commission_pct
FROM sales_rep
WHERE ? = sales_rep.brand_id
2012-07-20 12:22:42,135 INFO sqlalchemy.engine.base.Engine (2,)
[]
>>> b.users.append(u) #自动创建一个单一的位置参数调用其中介(SalesRep)对象
2012-07-20 12:22:46,782 INFO sqlalchemy.engine.base.Engine SELECTsales_rep.brand_id AS sales_rep_brand_id, sales_rep.user_id ASsales_rep_user_id, sales_rep.commission_pct AS sales_rep_commission_pct
FROM sales_rep
WHERE ? = sales_rep.user_id
2012-07-20 12:22:46,782 INFO sqlalchemy.engine.base.Engine (2,)
>>> b.users
[<__main__.User object at 0x87d7b6c>]
>>> b.sales_reps
[<__main__.SalesRep object at 0x87d7c4c>]
>>> b.sales_reps[0].commission_pct
0
>>> session.flush()
2012-07-20 12:23:14,215 INFO sqlalchemy.engine.base.Engine INSERT INTOsales_rep (brand_id, user_id, commission_pct) VALUES (?, ?, ?)
2012-07-20 12:23:14,215 INFO sqlalchemy.engine.base.Engine (2, 2, 0)
· 更复杂的想法给销售人员一个10%的提成:
· Brand.users=association_proxy(
‘sales_reps’, ‘user’,
creator=lambda u:SalesRep(user=u, commission_pct=10))
· 假设我们想要的品牌属性是一个附带User和佣金commission_pct的字典:
· fromsqlalchemy.orm.collections import attribute_mapped_collection
>>> from sqlalchemy.orm.collections import attribute_mapped_collection
>>> reps_by_user_class=attribute_mapped_collection(‘user’)
>>> clear_mappers()
>>> mapper(Brand, brand_table, properties=dict(
… sales_reps_by_user=relation(
… SalesRep, backref=’brand’,
… collection_class=reps_by_user_class)))
<Mapper at 0x862c5ec; Brand>
· >>>Brand.commissions=association_proxy(
… ‘sales_reps_by_user’, ‘commission_pct’,
… creator=lambda key,value: SalesRep(user=key,commission_pct=value))
>>> mapper(User, user_table, properties=dict(
… sales_rep=relation(SalesRep, backref=’user’,uselist=False)))
<Mapper at 0x8764b2c; User>
>>> mapper(SalesRep, sales_rep_table)
<Mapper at 0x87bb4cc; SalesRep>
>>> b = session.query(Brand).get(1)
>>> u = session.query(User).get(1)
>>> b.commissions[u] = 20
>>> session.bind.echo = False
>>> session.flush()
>>> b = session.query(Brand).get(1)
>>> u = session.query(User).get(1)
>>> u.user_name
u’dongwm’
>>> print b.commissions[u]
20
>>> print b.sales_reps_by_user[u] #代理和原来的关系是自动同步的
<__main__.SalesRep object at 0x87e3dcc>
>>> print b.sales_reps_by_user[u].commission_pct
20
最后
以上就是无辜裙子为你收集整理的SQLAlchemy详细教程的全部内容,希望文章能够帮你解决SQLAlchemy详细教程所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复