我是靠谱客的博主 漂亮酒窝,最近开发中收集的这篇文章主要介绍【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

【1】

【2】

Answer: B。 即 x1=3这条垂直线。

【3】

 

Answer: B

因为要尽可能小。对B,右侧红叉,有1/2 * 2  = 1 ≥ 1,左侧圆圈,有1/2 * -2  = -1 ≤ -1。

A太小不满足不等式

【4】

参考课件:


 测验

Answer:B。

 

Answer: B

Answer:CD

 

Answer: ABG

欠拟合。

A 正确。增加feature、增加多项式feature

B 正确。神经网络增加hidden units

C 错误。逻辑回归成本函数是凸的,因此梯度下降总是会找到全局最小值。

D 错误。

E 错误。

F 错误。已经欠拟合了,应该减小

G 正确。

 

          

Answer: ADE

A 正确。使用高斯核做相似性度量,要求数据处于大致相同的范围内。

B 错误。线性可分的数据集通常可以由许多不同的线分隔。 改变参数C将导致SVM的决策边界在这些可能性之间变化。 例如,对于非常大的C值,它可以学习更大的θ值以增加某些示例的余量。

C 错误。K个分类器

D 正确。范围为0-1,参考课件

E 正确

F 错误

 

转载于:https://www.cnblogs.com/maxiaodoubao/p/10153163.html

最后

以上就是漂亮酒窝为你收集整理的【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM的全部内容,希望文章能够帮你解决【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部