我是靠谱客的博主 无聊冬瓜,最近开发中收集的这篇文章主要介绍YOLOV7算法(五)pth/pt转onnx学习记录,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

输入指令

python export.py --weights /kaxier01/projects/FAS/yolov7/weights/yolov7.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

export.py代码学习

import argparse
import sys
import time
import warnings
sys.path.append('./')
# to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
import models
from models.experimental import attempt_load, End2End
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
from utils.add_nms import RegisterNMS
import sys
import warnings
warnings.filterwarnings('ignore')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='/kaxier01/projects/FAS/yolov7/weights/yolov7.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
# height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1
# opt.img_size=[640, 640]
opt.dynamic = opt.dynamic and not opt.end2end
# False
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
# False
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
# device='cpu'
model = attempt_load(opt.weights, map_location=device)
# load FP32 model
labels = model.names
'''
labels=
['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush']
'''
# Checks
gs = int(max(model.stride))
# grid size (max stride), gs=32
opt.img_size = [check_img_size(x, gs) for x in opt.img_size]
# verify img_size are gs-multiples, opt.img_size=[640, 640]
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device)
# image size(1,3,320,192) iDetection, img.shape=torch.Size([1, 3, 640, 640])
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set()
# pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv):
# assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
model.model[-1].export = not opt.grid
# set Detect() layer grid export, model.model[-1].export=False
y = model(img)
# dry run
if opt.include_nms:
model.model[-1].include_nms = True
y = None
# TorchScript export
try:
print('nStarting TorchScript export with torch %s...' % torch.__version__)
f = opt.weights.replace('.pt', '.torchscript.pt')
# f='/kaxier01/projects/FAS/yolov7/weights/yolov7.torchscript.pt'
ts = torch.jit.trace(model, img, strict=False)
ts.save(f)
# .torchscript.pt模型可以不依赖于python而直接在c++等环境中运行
print('TorchScript export success, saved as %s' % f)
except Exception as e:
print('TorchScript export failure: %s' % e)
# CoreML export
try:
import coremltools as ct
print('nStarting CoreML export with coremltools %s...' % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
if bits < 32:
if sys.platform.lower() == 'darwin':
# quantization only supported on macOS
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
# suppress numpy==1.20 float warning
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
else:
print('quantization only supported on macOS, skipping...')
f = opt.weights.replace('.pt', '.mlmodel')
# f='/kaxier01/projects/FAS/yolov7/weights/yolov7.mlmodel'
ct_model.save(f)
# .mlmodel可部署到IOS端
print('CoreML export success, saved as %s' % f)
except Exception as e:
print('CoreML export failure: %s' % e)
# TorchScript-Lite export
try:
print('nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
f = opt.weights.replace('.pt', '.torchscript.ptl')
# f='/kaxier01/projects/FAS/yolov7/weights/yolov7.torchscript.ptl'
tsl = torch.jit.trace(model, img, strict=False)
tsl = optimize_for_mobile(tsl)
tsl._save_for_lite_interpreter(f)
# .torchscript.ptl模型可部署到Android端
print('TorchScript-Lite export success, saved as %s' % f)
except Exception as e:
print('TorchScript-Lite export failure: %s' % e)
# ONNX export
try:
import onnx
print('nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx')
# f='/kaxier01/projects/FAS/yolov7/weights/yolov7.onnx'
model.eval()
output_names = ['classes', 'boxes'] if y is None else ['output']
# output_names=['output']
dynamic_axes = None
if opt.dynamic:
dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'},
# size(1,3,640,640)
'output': {0: 'batch', 2: 'y', 3: 'x'}}
if opt.dynamic_batch:
opt.batch_size = 'batch'
dynamic_axes = {
'images': {
0: 'batch',
}, }
if opt.end2end and opt.max_wh is None:
output_axes = {
'num_dets': {0: 'batch'},
'det_boxes': {0: 'batch'},
'det_scores': {0: 'batch'},
'det_classes': {0: 'batch'},
}
else:
output_axes = {
'output': {0: 'batch'},
}
dynamic_axes.update(output_axes)
if opt.grid:
if opt.end2end:
print('nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels))
if opt.end2end and opt.max_wh is None:
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
else:
output_names = ['output']
else:
model.model[-1].concat = True
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=output_names,
dynamic_axes=dynamic_axes)
# Checks
onnx_model = onnx.load(f)
# load onnx model
onnx.checker.check_model(onnx_model)
# check onnx model
if opt.end2end and opt.max_wh is None:
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
# print(onnx.helper.printable_graph(onnx_model.graph))
# print a human readable model
if opt.simplify:
try:
import onnxsim
print('nStarting to simplify ONNX...')
onnx_model, check = onnxsim.simplify(onnx_model)
# 简化模型
assert check, 'assert check failed'
except Exception as e:
print(f'Simplifier failure: {e}')
# print(onnx.helper.printable_graph(onnx_model.graph))
# print a human readable model
onnx.save(onnx_model,f)
print('ONNX export success, saved as %s' % f)
if opt.include_nms:
print('Registering NMS plugin for ONNX...')
mo = RegisterNMS(f)
mo.register_nms()
mo.save(f)
except Exception as e:
print('ONNX export failure: %s' % e)
# Finish
print('nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))

如果遇到

CoreML export failure: Core ML only supports tensors with rank <= 5. Layer "model.105.anchor_grid", with type "const", outputs a rank 6 tensor.

则把输入指令改成

python export.py --weights /kaxier01/projects/FAS/yolov7/weights/yolov7.pt --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

yolov7.onnx网络结构图

最后

以上就是无聊冬瓜为你收集整理的YOLOV7算法(五)pth/pt转onnx学习记录的全部内容,希望文章能够帮你解决YOLOV7算法(五)pth/pt转onnx学习记录所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部