我是靠谱客的博主 淡定棉花糖,最近开发中收集的这篇文章主要介绍单机下进行分布式爬取数据(windows下单机模拟多机进行分布式爬虫),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

URL管理器ControlNode/ URLManager.py

#coding:utf-8
import cPickle
import hashlib
class UrlManager(object):
    def __init__(self):
        self.new_urls = self.load_progress('new_urls.txt')#未爬取URL集合
        self.old_urls = self.load_progress('old_urls.txt')#已爬取URL集合
    def has_new_url(self):
        '''
        判断是否有未爬取的URL
        :return:
        '''
        return self.new_url_size()!=0

    def get_new_url(self):
        '''
        获取一个未爬取的URL
        :return:
        '''
        new_url = self.new_urls.pop()
        m = hashlib.md5()
        m.update(new_url)
        self.old_urls.add(m.hexdigest()[8:-8])
        return new_url

    def add_new_url(self,url):
        '''
         将新的URL添加到未爬取的URL集合中
        :param url:单个URL
        :return:
        '''
        if url is None:
            return
        m = hashlib.md5()
        m.update(url)
        url_md5 =  m.hexdigest()[8:-8]
        if url not in self.new_urls and url_md5 not in self.old_urls:
            self.new_urls.add(url)

    def add_new_urls(self,urls):
        '''
        将新的URLS添加到未爬取的URL集合中
        :param urls:url集合
        :return:
        '''
        if urls is None or len(urls)==0:
            return
        for url in urls:
            self.add_new_url(url)

    def new_url_size(self):
        '''
        获取未爬取URL集合的s大小
        :return:
        '''
        return len(self.new_urls)

    def old_url_size(self):
        '''
        获取已经爬取URL集合的大小
        :return:
        '''
        return len(self.old_urls)

    def save_progress(self,path,data):
        '''
        保存进度
        :param path:文件路径
        :param data:数据
        :return:
        '''
        with open(path, 'wb') as f:
            cPickle.dump(data, f)

    def load_progress(self,path):
        '''
        从本地文件加载进度
        :param path:文件路径
        :return:返回set集合
        '''
        print '[+] 从文件加载进度: %s' % path
        try:
            with open(path, 'rb') as f:
                tmp = cPickle.load(f)
                return tmp
        except:
            print '[!] 无进度文件, 创建: %s' % path
        return set()

数据存储端:ControlNode/DataOutput.py

#coding:utf-8
import codecs
import time
class DataOutput(object):
    def __init__(self):
        self.filepath='baike_%s.html'%(time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) )
        self.output_head(self.filepath)
        self.datas=[]
    def store_data(self,data):
        if data is None:
            return
        self.datas.append(data)
        if len(self.datas)>10:
            self.output_html(self.filepath)


    def output_head(self,path):
        '''
        将HTML头写进去
        :return:
        '''
        fout=codecs.open(path,'w',encoding='utf-8')
        fout.write("<html>")
        fout.write("<body>")
        fout.write("<table>")
        fout.close()

    def output_html(self,path):
        '''
        将数据写入HTML文件中
        :param path: 文件路径
        :return:
        '''
        fout=codecs.open(path,'a',encoding='utf-8')
        for data in self.datas:
            fout.write("<tr>")
            fout.write("<td>%s</td>"%data['url'])
            fout.write("<td>%s</td>"%data['title'])
            fout.write("<td>%s</td>"%data['summary'])
            fout.write("</tr>")
        self.datas=[]
        fout.close()

    def ouput_end(self,path):
        '''
        输出HTML结束
        :param path: 文件存储路径
        :return:
        '''
        fout=codecs.open(path,'a',encoding='utf-8')
        fout.write("</table>")
        fout.write("</body>")
        fout.write("</html>")
        fout.close()

控制节点端ControlNode/NodeManager.py

#coding:utf-8

from multiprocessing.managers import BaseManager

import time

from multiprocessing import Process, Queue

from DataOutput import DataOutput
from UrlManager import UrlManager


class NodeManager(object):

    def start_Manager(self,url_q,result_q):
        '''
        创建一个分布式管理器
        :param url_q: url队列
        :param result_q: 结果队列
        :return:
        '''
        #把创建的两个队列注册在网络上,利用register方法,callable参数关联了Queue对象,
        # 将Queue对象在网络中暴露
        BaseManager.register('get_task_queue',callable=lambda:url_q)
        BaseManager.register('get_result_queue',callable=lambda:result_q)
        #绑定端口8001,设置验证口令‘baike’。这个相当于对象的初始化
        manager=BaseManager(address=('',8001),authkey='baike')
        #返回manager对象
        return manager



    def url_manager_proc(self,url_q,conn_q,root_url):
        url_manager = UrlManager()
        url_manager.add_new_url(root_url)
        while True:
            while(url_manager.has_new_url()):

                #从URL管理器获取新的url
                new_url = url_manager.get_new_url()
                #将新的URL发给工作节点
                url_q.put(new_url)
                print 'old_url=',url_manager.old_url_size()
                #加一个判断条件,当爬去2000个链接后就关闭,并保存进度
                if(url_manager.old_url_size()>2000):
                    #通知爬行节点工作结束
                    url_q.put('end')
                    print '控制节点发起结束通知!'
                    #关闭管理节点,同时存储set状态
                    url_manager.save_progress('new_urls.txt',url_manager.new_urls)
                    url_manager.save_progress('old_urls.txt',url_manager.old_urls)
                    return
            #将从result_solve_proc获取到的urls添加到URL管理器之间
            try:
                if not conn_q.empty():
                    urls = conn_q.get()
                    url_manager.add_new_urls(urls)
            except BaseException,e:
                time.sleep(0.1)#延时休息



    def result_solve_proc(self,result_q,conn_q,store_q):
        while(True):
            try:
                if not result_q.empty():
                    content = result_q.get(True)
                    if content['new_urls']=='end':
                        #结果分析进程接受通知然后结束
                        print '结果分析进程接受通知然后结束!'
                        store_q.put('end')
                        return
                    conn_q.put(content['new_urls'])#url为set类型
                    store_q.put(content['data'])#解析出来的数据为dict类型
                else:
                    time.sleep(0.1)#延时休息
            except BaseException,e:
                time.sleep(0.1)#延时休息

    def store_proc(self,store_q):
        output = DataOutput()
        while True:
            if not store_q.empty():
                data = store_q.get()
                if data=='end':
                    print '存储进程接受通知然后结束!'
                    output.ouput_end(output.filepath)

                    return
                output.store_data(data)
            else:
                time.sleep(0.1)
        pass


if __name__=='__main__':
    #初始化4个队列

    url_q = Queue()
    result_q = Queue()
    store_q = Queue()
    conn_q = Queue()
    #创建分布式管理器
    node = NodeManager()
    manager = node.start_Manager(url_q,result_q)
    #创建URL管理进程、 数据提取进程和数据存储进程
    url_manager_proc = Process(target=node.url_manager_proc, args=(url_q,conn_q,'http://baike.baidu.com/view/284853.htm',))
    result_solve_proc = Process(target=node.result_solve_proc, args=(result_q,conn_q,store_q,))
    store_proc = Process(target=node.store_proc, args=(store_q,))
    #启动3个进程和分布式管理器
    url_manager_proc.start()
    result_solve_proc.start()
    store_proc.start()
    manager.get_server().serve_forever()

以下部署在另一台机器上,为爬虫端

爬虫调度器SpiderNode/SpiderWork.py

#coding:utf-8
from multiprocessing.managers import BaseManager

from HtmlDownloader import HtmlDownloader
from HtmlParser import HtmlParser


class SpiderWork(object):
    def __init__(self):
        #初始化分布式进程中的工作节点的连接工作
        # 实现第一步:使用BaseManager注册获取Queue的方法名称
        BaseManager.register('get_task_queue')
        BaseManager.register('get_result_queue')
        # 实现第二步:连接到服务器:
        server_addr = '127.0.0.1'
        print('Connect to server %s...' % server_addr)
        # 端口和验证口令注意保持与服务进程设置的完全一致:
        self.m = BaseManager(address=(server_addr, 8001), authkey='baike')
        # 从网络连接:
        self.m.connect()
        # 实现第三步:获取Queue的对象:
        self.task = self.m.get_task_queue()
        self.result = self.m.get_result_queue()
        #初始化网页下载器和解析器
        self.downloader = HtmlDownloader()
        self.parser = HtmlParser()
        print 'init finish'

    def crawl(self):
        while(True):
            try:
                if not self.task.empty():
                    url = self.task.get()

                    if url =='end':
                        print '控制节点通知爬虫节点停止工作...'
                        #接着通知其它节点停止工作
                        self.result.put({'new_urls':'end','data':'end'})
                        return
                    print '爬虫节点正在解析:%s'%url.encode('utf-8')
                    content = self.downloader.download(url)
                    new_urls,data = self.parser.parser(url,content)
                    self.result.put({"new_urls":new_urls,"data":data})
            except EOFError,e:
                print "连接工作节点失败"
                return
            except Exception,e:
                print e
                print 'Crawl  fali '




if __name__=="__main__":
    spider = SpiderWork()
    spider.crawl()

HTML解析器SpiderNode/HtmlParser.py

#coding:utf-8
import re
import urlparse
from bs4 import BeautifulSoup


class HtmlParser(object):

    def parser(self,page_url,html_cont):
        '''
        用于解析网页内容抽取URL和数据
        :param page_url: 下载页面的URL
        :param html_cont: 下载的网页内容
        :return:返回URL和数据
        '''
        if page_url is None or html_cont is None:
            return
        soup = BeautifulSoup(html_cont,'html.parser',from_encoding='utf-8')
        new_urls = self._get_new_urls(page_url,soup)
        new_data = self._get_new_data(page_url,soup)
        return new_urls,new_data


    def _get_new_urls(self,page_url,soup):
        '''
        抽取新的URL集合
        :param page_url: 下载页面的URL
        :param soup:soup
        :return: 返回新的URL集合
        '''
        new_urls = set()
        #抽取符合要求的a标签
        # 原书代码
        # links = soup.find_all('a', href=re.compile(r'/view/d+.htm'))
        #2017-07-03 更新,原因百度词条的链接形式发生改变
        links = soup.find_all('a',href=re.compile(r'/item/.*'))
        for link in links:
            #提取href属性
            new_url = link['href']
            #拼接成完整网址
            new_full_url = urlparse.urljoin(page_url,new_url)
            new_urls.add(new_full_url)
        return new_urls
    def _get_new_data(self,page_url,soup):
        '''
        抽取有效数据
        :param page_url:下载页面的URL
        :param soup:
        :return:返回有效数据
        '''
        data={}
        data['url']=page_url
        title = soup.find('dd',class_='lemmaWgt-lemmaTitle-title').find('h1')
        data['title']=title.get_text()
        summary = soup.find('div',class_='lemma-summary')
        #获取到tag中包含的所有文版内容包括子孙tag中的内容,并将结果作为Unicode字符串返回
        data['summary']=summary.get_text()
        return data

HTML下载器SpiderNode/HtmlDownloader.py

#coding:utf-8
import requests
class HtmlDownloader(object):

    def download(self,url):
        if url is None:
            return None
        user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
        headers={'User-Agent':user_agent}
        r = requests.get(url,headers=headers)
        if r.status_code==200:
            r.encoding='utf-8'
            return r.text
        return None

最后

以上就是淡定棉花糖为你收集整理的单机下进行分布式爬取数据(windows下单机模拟多机进行分布式爬虫)的全部内容,希望文章能够帮你解决单机下进行分布式爬取数据(windows下单机模拟多机进行分布式爬虫)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(69)

评论列表共有 0 条评论

立即
投稿
返回
顶部