概述
应用:运动,信号系统
本质:自回归(auto regression),线性算子(Linear operator), 离散, 随机系统
该系统由如下方程表示(Controlled by a Linear stochastic difference equation):
(大写为矩阵,小写为一维变量)
真实过程为线性:
(w_{k-1}" title="x_k = Ax_{k-1} + B u_{k-1} + w_{k-1} )
discrete time, linear, dynamic, state space, vector difference equation
State: smallest vector to summarize the past of the system.
Prediction: in the absence of the noise.
State equation:
( x(k+1) = F(k) x(k) +G(k)u(k) + v(k)
)
( x(k) ) is the (n_x) dimensional state vector
( v(k) ) is the white noise with covariance ( Q(k))
Measurement equation:
( z(k) = x(k) + w(k)
)
( w(k) ) is the white noise with covariance ( R(k))
测量系统也为线性:
$z_k = H x_k +v_k.$
$w_{k-1}$与$v_k$为噪音。
转载于:https://www.cnblogs.com/haowang/p/8628213.html
最后
以上就是平常马里奥为你收集整理的卡尔曼滤波Kalman filter原理的全部内容,希望文章能够帮你解决卡尔曼滤波Kalman filter原理所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复