安装TensorFlow
复制代码
1
2
3
4
5
6
7#展示anaconda中所有的环境 conda env list #选择TensorFlow安装在哪个环境 conda activate 环境名称 #安装TensorFlow pip install tensorflow -i https://pypi.douban.com/simple
这里推荐pip安装,其他方式安装有时会报错
安装Keras
从anaconda包列表中直接安装
测试代码
在Spyder中进行运行
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77# -*- coding: utf-8 -*- """ Created on Wed Feb 8 17:26:25 2023 @author: hczhu """ # mnist attention import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.utils import np_utils from keras.layers import * from keras.models import * from keras.optimizers import Adam TIME_STEPS = 28 INPUT_DIM = 28 lstm_units = 64 # data pre-processing (X_train, y_train), (X_test, y_test) = mnist.load_data('mnist.npz') X_train = X_train.reshape(-1, 28, 28) / 255. X_test = X_test.reshape(-1, 28, 28) / 255. y_train = np_utils.to_categorical(y_train, num_classes=10) y_test = np_utils.to_categorical(y_test, num_classes=10) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) # first way attention def attention_3d_block(inputs): #input_dim = int(inputs.shape[2]) a = Permute((2, 1))(inputs) a = Dense(TIME_STEPS, activation='softmax')(a) a_probs = Permute((2, 1), name='attention_vec')(a) #output_attention_mul = merge([inputs, a_probs], name='attention_mul', mode='mul') output_attention_mul = multiply([inputs, a_probs], name='attention_mul') return output_attention_mul # build RNN model with attention inputs = Input(shape=(TIME_STEPS, INPUT_DIM)) drop1 = Dropout(0.3)(inputs) lstm_out = Bidirectional(LSTM(lstm_units, return_sequences=True), name='bilstm')(drop1) attention_mul = attention_3d_block(lstm_out) attention_flatten = Flatten()(attention_mul) drop2 = Dropout(0.3)(attention_flatten) output = Dense(10, activation='sigmoid')(drop2) model = Model(inputs=inputs, outputs=output) # second way attention # inputs = Input(shape=(TIME_STEPS, INPUT_DIM)) # units = 32 # activations = LSTM(units, return_sequences=True, name='lstm_layer')(inputs) # # attention = Dense(1, activation='tanh')(activations) # attention = Flatten()(attention) # attention = Activation('softmax')(attention) # attention = RepeatVector(units)(attention) # attention = Permute([2, 1], name='attention_vec')(attention) # attention_mul = merge([activations, attention], mode='mul', name='attention_mul') # out_attention_mul = Flatten()(attention_mul) # output = Dense(10, activation='sigmoid')(out_attention_mul) # model = Model(inputs=inputs, outputs=output) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) print(model.summary()) print('Training------------') model.fit(X_train, y_train, epochs=10, batch_size=16) print('Testing--------------') loss, accuracy = model.evaluate(X_test, y_test) print('test loss:', loss) print('test accuracy:', accuracy)
最后
以上就是瘦瘦春天最近收集整理的关于Anaconda快速安装TensorFlow和Keras安装TensorFlow安装Keras测试代码的全部内容,更多相关Anaconda快速安装TensorFlow和Keras安装TensorFlow安装Keras测试代码内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复