在keras中,保存.h5模型可能出现两种保存方法:
即(1)保存模型权重和网络结构,以及(2)只保存模型权重。
.h5转.pb的两种方式:
方法一:
Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码
1
-
from keras.models import Model
-
from keras.layers import Dense, Dropout
-
from keras.applications.mobilenet import MobileNet
-
from keras.applications.mobilenet import preprocess_input
-
from keras.preprocessing.image import load_img, img_to_array
-
import tensorflow as tf
-
from keras import backend as K
-
import os
-
base_model = MobileNet((None, None, 3), alpha=1, include_top=False, pooling='avg', weights=None)
-
x = Dropout(0.75)(base_model.output)
-
x = Dense(10, activation='softmax')(x)
-
model = Model(base_model.input, x)
-
model.load_weights('mobilenet_weights.h5')
-
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
-
from tensorflow.python.framework.graph_util import convert_variables_to_constants
-
graph = session.graph
-
with graph.as_default():
-
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
-
output_names = output_names or []
-
output_names += [v.op.name for v in tf.global_variables()]
-
input_graph_def = graph.as_graph_def()
-
if clear_devices:
-
for node in input_graph_def.node:
-
node.device = ""
-
frozen_graph = convert_variables_to_constants(session, input_graph_def,
-
output_names, freeze_var_names)
-
return frozen_graph
-
output_graph_name = 'NIMA.pb'
-
output_fld = ''
-
#K.set_learning_phase(0)
-
print('input is :', model.input.name)
-
print ('output is:', model.output.name)
-
sess = K.get_session()
-
frozen_graph = freeze_session(K.get_session(), output_names=[model.output.op.name])
-
from tensorflow.python.framework import graph_io
-
graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)
-
print('saved the constant graph (ready for inference) at: ', os.path.join(output_fld, output_graph_name)
方法二:
先建立好网络结构model,然后调用load_weights函数加载权重参数,然后再开始转:
本文主要记录Keras训练得到的.h5
模型文件转换成TensorFlow的.pb
文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56#*-coding:utf-8-* """ 将keras的.h5的模型文件,转换成TensorFlow的pb文件 """ # ========================================================== from keras.models import load_model import tensorflow as tf import os from keras import backend def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True): """.h5模型文件转换成pb模型文件 Argument: h5_model: str .h5模型文件 output_dir: str pb模型文件保存路径 model_name: str pb模型文件名称 out_prefix: str 根据训练,需要修改 log_tensorboard: bool 是否生成日志文件 Return: pb模型文件 """ if os.path.exists(output_dir) == False: os.mkdir(output_dir) out_nodes = [] for i in range(len(h5_model.outputs)): out_nodes.append(out_prefix + str(i + 1)) tf.identity(h5_model.output[i], out_prefix + str(i + 1)) sess = backend.get_session() from tensorflow.python.framework import graph_util, graph_io # 写入pb模型文件 init_graph = sess.graph.as_graph_def() main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes) graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False) # 输出日志文件 if log_tensorboard: from tensorflow.python.tools import import_pb_to_tensorboard import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir) if __name__ == '__main__': # .h模型文件路径参数 input_path = 'satellite/train_dir/models/' weight_file = 'satellite_iv3_ft.h5' weight_file_path = os.path.join(input_path, weight_file) output_graph_name = weight_file[:-3] + '.pb' # pb模型文件输出输出路径 output_dir = os.path.join(os.getcwd(), "satellite/train_dir/models/") # 加载模型 h5_model = load_model(weight_file_path) h5_to_pb(h5_model, output_dir=output_dir, model_name=output_graph_name) print('Finished')
其中,load_model()这个函数不是从keras中加载的,功能就是自己创建的网络结构,创建好网络结构后加载模型,最后才得到h5_model。 然后才开始调用h5_to_pb转化。
最后
以上就是迅速嚓茶最近收集整理的关于Keras模型.h5转成tensorflow的.pb的全部内容,更多相关Keras模型.h5转成tensorflow内容请搜索靠谱客的其他文章。
发表评论 取消回复