概述
写在前面:hive的版本是1.2.1spark的版本是1.6.x
http://spark.apache.org/docs/1.6.1/sql-programming-guide.html#hive-tables 查看hive和spark版本对应情况
SparkSQL操作Hive中的表数据
spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然后在spark引擎中进行sql统计分析,从而,通过sparksql与hive结合实现数据分析将成为一种最佳实践。详细实现步骤如下:
1、启动hive的元数据服务
hive可以通过服务的形式对外提供元数据读写操作,通过简单的配置即可
编辑 $HIVE_HOME/conf/hive-site.xml,增加如下内容:
<property>
<name>hive.metastore.uris</name>
<value>thrift:// hdp-node-01:9083</value>
</property>
启动hive metastore
[hadoop@hdp-node-01 ~]${HIVE_HOME}/bin/hive --service metastore 1>/dev/null 2>&1 &
查看 metastore:
[hadoop@hdp-node-01 ~] jobs
[1]+ Running hive --service metastore &
2、spark配置
将hive的配置文件拷贝给spark
将 $HIVE_HOME/conf/hive-site.xml copy $SPARK_HOME/conf/
将mysql的jdbc驱动包拷贝给spark
将 $HIVE_HOME/lib/mysql-connector-java-5.1.12.jar copy或者软链到$SPARK_HOME/lib/
3、启动spark-sql的shell交互界面
spark-sql已经集成在spark-shell中,因此,只要启动spark-shell,就可以使用spakr-sql的shell交互接口:
[hadoop@hdp-node-01 spark] bin/spark-shell --master spark://hdp-node-01:7077
或者,可以启动spark-sql界面,使用起来更方便
[hadoop@hdp-node-01 spark] bin/spark-sql --master spark://hdp-node-01:7077
就可以使用hivesql了
由于在console中会打印很多info级别日志,所以可以改变spark的日志级别
4、在交互界面输入sql进行查询
注:以下所用到的库和表,都是已经在hive中存在的库和表
如果在spark-shell中执行sql查询,使用sqlContext对象调用sql()方法
scala> sqlContext.sql("select remote_addr from dw_weblog.t_ods_detail group by remote_addr").collect.foreach(println)
如果是在spark-sql中执行sql查询,则可以直接输入sql语句
scala> show databases
scala> use dw_weblog
scala> select remote_addr from dw_weblog.t_ods_detail group by remote_addr
5、在IDEA中编写代码使用hive-sql
如下所示:
val hiveContext = new HiveContext(sc)
import hiveContext.implicits._
import hiveContext.sql
//指定库
sql("use dw_weblog")
//执行标准sql语句
sql("create table sparksql as select remote_addr,count(*) from t_ods_detail group by remote_addr")
……
综上所述,sparksql类似于hive,可以支持sql语法来对海量数据进行分析查询,跟hive不同的是,hive执行sql任务的底层运算引擎采用mapreduce运算框架,而sparksql执行sql任务的运算引擎是spark core,从而充分利用spark内存计算及DAG模型的优势,大幅提升海量数据的分析查询速度
源码
最后:
sparksql 如果连接报错可能的原因是hive元数据库的编码不是utf8的,
alter database hive character set latin1;
ALTER TABLE hive.* DEFAULT CHARACTER SET latin1;
sparksql 执行创建表的时候报错
org.apache.spark.sql.execution.QueryExecutionException: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:file:/user/hive/warehouse/student2 is not a directory or unable to create one)
可能是没有启动hive元数据服务
转载于:https://www.cnblogs.com/rocky-AGE-24/p/7345417.html
最后
以上就是自信溪流为你收集整理的sparksql 操作hive的全部内容,希望文章能够帮你解决sparksql 操作hive所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复