概述
-
BlockManager
定义BlockManager
是Spark
的分布式存储系统,与我们平常说的分布式存储系统是有区别的,区别就是这个分布式存储系统只会管理Block
块数据,它运行在所有节点上。BlockManager
的结构是Maser-Slave
架构,Master
就是Driver
上的BlockManagerMaster
,Slave
就是每个Executor
上的BlockManager
。BlockManagerMaster
负责接受Executor
上的BlockManager
的注册以及管理BlockManager
的元数据信息- 有需要可以联系我2317384986 yxxy1717
BlockManager
原理
-
- 从上边的定义我们已经得知,
BlockManager
是分布式的,运行在各个节点上的。从BlockManager
的创建过程来看,其实Block
是运行在Driver
和每个Executor
的。因为在创建SparkContext
的时候,会调用SparkEnv.blockManager.initialize
方法实例化BlockManager
对象,在创建Executor
对象的时候也会创建BlockManager
。 - 在初始化
BlockManager
的时候,第一步会初始化BlockTransferService
的init
方法(子类NettyBlockTransferService实现了init方法)
,这个方法的作用就是初始化Netty
服务,为拉取block
数据提供服务。第二步是调用shuffleClient
的init
方法,shuffleClient
这个引用有可能是BlockTransferService
有可能是ExternalShuffleClient
,取决于我们的配置文件是否配置了externalShuffleServiceEnabled
未开启状态,其实无论是哪种,都是为了对外提供服务,能够使block
数据再节点之间流动起来。 BlockManagerMaster
调用registerBlockManager
方法,向BlockManagerMaster(其实BlockManagerMasterEndpoint)
发送BlockManager
的注册请求。BlockManagerMaster(其实BlockManagerMasterEndpoint)
接受到BlockManager
的注册请求后。会调用register
方法,开始注册Executor
上的BlockManager
,注册完成以后将BlockManagerId
返回给对应Executor
上的BlockManager
。
- 从上边的定义我们已经得知,
-
BlockManager
源码-
当我们的程序启动的时候,首先会创建
SparkContext
对象,在创建SparkContext
对象的时候就会调用_env.blockManager.initialize(_applicationId)
创建BlockManager
对象,这个BlockManager
就是Driver
上的BlockManager
,它负责管理集群中Executor
上的BlockManager
-
SparkContext
里创建BlockManager
代码片段//为Driver创建BlockManager _env.blockManager.initialize(_applicationId)
- 1
- 2
-
创建
Executor
的时候,Executor
内部会调用_env.blockManager.initialize(conf.getAppId)
方法创建BlockManager
if (!isLocal) { env.metricsSystem.registerSource(executorSource) env.blockManager.initialize(conf.getAppId) }
- 1
- 2
- 3
- 4
-
BlockManager
类里的initialize
方法,该方法作用是创建BlockManager
,并且向BlockManagerMaster
进行注册def initialize(appId: String): Unit = { //初始化BlockTransferService,其实是它的子类NettyBlockTransferService是下了init方法, //该方法的作用就是初始化传输服务,通过传输服务可以从不同的节点上拉取Block数据 blockTransferService.init(this) shuffleClient.init(appId) //设置block的复制分片策略,由spark.storage.replication.policy指定 blockReplicationPolicy = { val priorityClass = conf.get( "spark.storage.replication.policy", classOf[RandomBlockReplicationPolicy].getName) val clazz = Utils.classForName(priorityClass) val ret = clazz.newInstance.asInstanceOf[BlockReplicationPolicy] logInfo(s"Using $priorityClass for block replication policy") ret } //根据给定参数为对对应的Executor封装一个BlockManagerId对象(块存储的唯一标识) //executorID:executor的Id,blockTransferService.hostName:传输Block数据的服务的主机名 //blockTransferService.port:传输Block数据的服务的主机名 val id = BlockManagerId(executorId, blockTransferService.hostName, blockTransferService.port, None) //调用BlockManagerMaster的registerBlockManager方法向Driver上的BlockManagerMaster注册 val idFromMaster = master.registerBlockManager( id, maxMemory, slaveEndpoint) //更新BlockManagerId blockManagerId = if (idFromMaster != null) idFromMaster else id //判断是否开了外部shuffle服务 shuffleServerId = if (externalShuffleServiceEnabled) { logInfo(s"external shuffle service port = $externalShuffleServicePort") BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort) } else { blockManagerId } // 如果开启了外部shuffle服务,并且该节点是Driver的话就调用registerWithExternalShuffleServer方法 //将BlockManager注册在本地 if (externalShuffleServiceEnabled && !blockManagerId.isDriver) { registerWithExternalShuffleServer() } logInfo(s"Initialized BlockManager: $blockManagerId") }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
-
BlockManagerMaster
类里的registerBlockManager
方法,向Driver
发送RegisterBlockManager
消息进行注册def registerBlockManager(blockManagerId: BlockManagerId,maxMemSize: Long,slaveEndpoint: RpcEndpointRef): BlockManagerId = { logInfo(s"Registering BlockManager $blockManagerId") //向Driver发送注册BlockManager请求 //blockManagerId:块存储的唯一标识,里边封装了该BlockManager所在的executorId,提供Netty服务的主机名和端口 //maxMemSize最大的内存 val updatedId = driverEndpoint.askWithRetry[BlockManagerId]( RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint)) logInfo(s"Registered BlockManager $updatedId") updatedId }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
-
BlockManagerMasterEndpoint
类里的receiveAndReply
方法,这个方法就是接受请求的消息,然后并处理请求def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = { //BlocManagerMasterEndPoint接收到来自Executor上的BlockManager注册请求的时候, //调用register方法开始注册BlockManager, case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) => context.reply(register(blockManagerId, maxMemSize, slaveEndpoint)) //....其余代码省略 }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
-
BlockManagerMasterEndpoint
类里的register
方法,该方法的作用就是开始注册executor
上的BlockManager
// BlockManager到BlockManaInfo的映射 private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo] //executorId到BlockManagerId的映射 private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId] private def register( idWithoutTopologyInfo: BlockManagerId, maxMemSize: Long, slaveEndpoint: RpcEndpointRef): BlockManagerId = { //利用从Executor上传过来的BlockManagerId信息重新封装BlockManagerId,并且 //之前传过来没有拓扑信息,这次直接将拓扑信息也封装进去,得到一个更完整的BlockManagerId val id = BlockManagerId( idWithoutTopologyInfo.executorId, idWithoutTopologyInfo.host, idWithoutTopologyInfo.port, topologyMapper.getTopologyForHost(idWithoutTopologyInfo.host)) val time = System.currentTimeMillis() //判断当前这个BlockManagerId是否注册过,注册结构为:HashMap[BlockManagerId, BlockManagerInfo] //如果没注册过就向下执行开始注册 if (!blockManagerInfo.contains(id)) { //首先会根据executorId查找内存缓存结构中是否有对应的BlockManagerId,如果为存在那么就将调用removeExecutor方法, //将executor从BlockManagerMaster中移除,首先会移除executorId对应的BlockManagerId,然后在移除该旧的BlockManager //其实就是移除以前的注册过的旧数据 blockManagerIdByExecutor.get(id.executorId) match { case Some(oldId) => // A block manager of the same executor already exists, so remove it (assumed dead) logError("Got two different block manager registrations on same executor - " + s" will replace old one $oldId with new one $id") removeExecutor(id.executorId) case None => } logInfo("Registering block manager %s with %s RAM, %s".format( id.hostPort, Utils.bytesToString(maxMemSize), id)) //将executorId与BlockManagerId映射起来,放到内存缓存中 blockManagerIdByExecutor(id.executorId) = id //将BlockManagerId与BlockManagerInfo映射起来,放入内存缓存中 //BlockManagerInfo封住了BlockMangerId,当前注册的事件,最大的内存 blockManagerInfo(id) = new BlockManagerInfo( id, System.currentTimeMillis(), maxMemSize, slaveEndpoint) } listenerBus.post(SparkListenerBlockManagerAdded(time, id, maxMemSize)) id }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
-
BlockManagerMasterEndpoint
类里的removeExecutor
方法,该方法的作用就是移除掉之前注册过的旧数据 -
BlockManager
定义BlockManager
是Spark
的分布式存储系统,与我们平常说的分布式存储系统是有区别的,区别就是这个分布式存储系统只会管理Block
块数据,它运行在所有节点上。BlockManager
的结构是Maser-Slave
架构,Master
就是Driver
上的BlockManagerMaster
,Slave
就是每个Executor
上的BlockManager
。BlockManagerMaster
负责接受Executor
上的BlockManager
的注册以及管理BlockManager
的元数据信息
-
BlockManager
原理- 从上边的定义我们已经得知,
BlockManager
是分布式的,运行在各个节点上的。从BlockManager
的创建过程来看,其实Block
是运行在Driver
和每个Executor
的。因为在创建SparkContext
的时候,会调用SparkEnv.blockManager.initialize
方法实例化BlockManager
对象,在创建Executor
对象的时候也会创建BlockManager
。 - 在初始化
BlockManager
的时候,第一步会初始化BlockTransferService
的init
方法(子类NettyBlockTransferService实现了init方法)
,这个方法的作用就是初始化Netty
服务,为拉取block
数据提供服务。第二步是调用shuffleClient
的init
方法,shuffleClient
这个引用有可能是BlockTransferService
有可能是ExternalShuffleClient
,取决于我们的配置文件是否配置了externalShuffleServiceEnabled
未开启状态,其实无论是哪种,都是为了对外提供服务,能够使block
数据再节点之间流动起来。 BlockManagerMaster
调用registerBlockManager
方法,向BlockManagerMaster(其实BlockManagerMasterEndpoint)
发送BlockManager
的注册请求。BlockManagerMaster(其实BlockManagerMasterEndpoint)
接受到BlockManager
的注册请求后。会调用register
方法,开始注册Executor
上的BlockManager
,注册完成以后将BlockManagerId
返回给对应Executor
上的BlockManager
。
- 从上边的定义我们已经得知,
-
BlockManager
源码-
当我们的程序启动的时候,首先会创建
SparkContext
对象,在创建SparkContext
对象的时候就会调用_env.blockManager.initialize(_applicationId)
创建BlockManager
对象,这个BlockManager
就是Driver
上的BlockManager
,它负责管理集群中Executor
上的BlockManager
-
SparkContext
里创建BlockManager
代码片段//为Driver创建BlockManager _env.blockManager.initialize(_applicationId)
- 1
- 2
-
创建
Executor
的时候,Executor
内部会调用_env.blockManager.initialize(conf.getAppId)
方法创建BlockManager
if (!isLocal) { env.metricsSystem.registerSource(executorSource) env.blockManager.initialize(conf.getAppId) }
- 1
- 2
- 3
- 4
-
BlockManager
类里的initialize
方法,该方法作用是创建BlockManager
,并且向BlockManagerMaster
进行注册def initialize(appId: String): Unit = { //初始化BlockTransferService,其实是它的子类NettyBlockTransferService是下了init方法, //该方法的作用就是初始化传输服务,通过传输服务可以从不同的节点上拉取Block数据 blockTransferService.init(this) shuffleClient.init(appId) //设置block的复制分片策略,由spark.storage.replication.policy指定 blockReplicationPolicy = { val priorityClass = conf.get( "spark.storage.replication.policy", classOf[RandomBlockReplicationPolicy].getName) val clazz = Utils.classForName(priorityClass) val ret = clazz.newInstance.asInstanceOf[BlockReplicationPolicy] logInfo(s"Using $priorityClass for block replication policy") ret } //根据给定参数为对对应的Executor封装一个BlockManagerId对象(块存储的唯一标识) //executorID:executor的Id,blockTransferService.hostName:传输Block数据的服务的主机名 //blockTransferService.port:传输Block数据的服务的主机名 val id = BlockManagerId(executorId, blockTransferService.hostName, blockTransferService.port, None) //调用BlockManagerMaster的registerBlockManager方法向Driver上的BlockManagerMaster注册 val idFromMaster = master.registerBlockManager( id, maxMemory, slaveEndpoint) //更新BlockManagerId blockManagerId = if (idFromMaster != null) idFromMaster else id //判断是否开了外部shuffle服务 shuffleServerId = if (externalShuffleServiceEnabled) { logInfo(s"external shuffle service port = $externalShuffleServicePort") BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort) } else { blockManagerId } // 如果开启了外部shuffle服务,并且该节点是Driver的话就调用registerWithExternalShuffleServer方法 //将BlockManager注册在本地 if (externalShuffleServiceEnabled && !blockManagerId.isDriver) { registerWithExternalShuffleServer() } logInfo(s"Initialized BlockManager: $blockManagerId") }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
-
BlockManagerMaster
类里的registerBlockManager
方法,向Driver
发送RegisterBlockManager
消息进行注册def registerBlockManager(blockManagerId: BlockManagerId,maxMemSize: Long,slaveEndpoint: RpcEndpointRef): BlockManagerId = { logInfo(s"Registering BlockManager $blockManagerId") //向Driver发送注册BlockManager请求 //blockManagerId:块存储的唯一标识,里边封装了该BlockManager所在的executorId,提供Netty服务的主机名和端口 //maxMemSize最大的内存 val updatedId = driverEndpoint.askWithRetry[BlockManagerId]( RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint)) logInfo(s"Registered BlockManager $updatedId") updatedId }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
-
BlockManagerMasterEndpoint
类里的receiveAndReply
方法,这个方法就是接受请求的消息,然后并处理请求def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = { //BlocManagerMasterEndPoint接收到来自Executor上的BlockManager注册请求的时候, //调用register方法开始注册BlockManager, case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) => context.reply(register(blockManagerId, maxMemSize, slaveEndpoint)) //....其余代码省略 }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
-
BlockManagerMasterEndpoint
类里的register
方法,该方法的作用就是开始注册executor
上的BlockManager
// BlockManager到BlockManaInfo的映射 private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo] //executorId到BlockManagerId的映射 private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId] private def register( idWithoutTopologyInfo: BlockManagerId, maxMemSize: Long, slaveEndpoint: RpcEndpointRef): BlockManagerId = { //利用从Executor上传过来的BlockManagerId信息重新封装BlockManagerId,并且 //之前传过来没有拓扑信息,这次直接将拓扑信息也封装进去,得到一个更完整的BlockManagerId val id = BlockManagerId( idWithoutTopologyInfo.executorId, idWithoutTopologyInfo.host, idWithoutTopologyInfo.port, topologyMapper.getTopologyForHost(idWithoutTopologyInfo.host)) val time = System.currentTimeMillis() //判断当前这个BlockManagerId是否注册过,注册结构为:HashMap[BlockManagerId, BlockManagerInfo] //如果没注册过就向下执行开始注册 if (!blockManagerInfo.contains(id)) { //首先会根据executorId查找内存缓存结构中是否有对应的BlockManagerId,如果为存在那么就将调用removeExecutor方法, //将executor从BlockManagerMaster中移除,首先会移除executorId对应的BlockManagerId,然后在移除该旧的BlockManager //其实就是移除以前的注册过的旧数据 blockManagerIdByExecutor.get(id.executorId) match { case Some(oldId) => // A block manager of the same executor already exists, so remove it (assumed dead) logError("Got two different block manager registrations on same executor - " + s" will replace old one $oldId with new one $id") removeExecutor(id.executorId) case None => } logInfo("Registering block manager %s with %s RAM, %s".format( id.hostPort, Utils.bytesToString(maxMemSize), id)) //将executorId与BlockManagerId映射起来,放到内存缓存中 blockManagerIdByExecutor(id.executorId) = id //将BlockManagerId与BlockManagerInfo映射起来,放入内存缓存中 //BlockManagerInfo封住了BlockMangerId,当前注册的事件,最大的内存 blockManagerInfo(id) = new BlockManagerInfo( id, System.currentTimeMillis(), maxMemSize, slaveEndpoint) } listenerBus.post(SparkListenerBlockManagerAdded(time, id, maxMemSize)) id }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
-
BlockManagerMasterEndpoint
类里的removeExecutor
方法,该方法的作用就是移除掉之前注册过的旧数据
-
-
最后
以上就是正直绿草为你收集整理的spark——blockmanager原理与源码分析的全部内容,希望文章能够帮你解决spark——blockmanager原理与源码分析所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复