概述
一、问题引入
BitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射,怎么理解呢?
举一个例子,有一个无序有界int数组{1,2,5,7},初步估计占用内存44=16字节,这倒是没什么奇怪的,但是假如有10亿个这样的数呢,
10亿4/(102410241024)=3.72G左右。如果这样的一个大的数据做查找和排序,那估计内存也崩溃了,有人说,
这些数据可以不用一次性加载,那就是要存盘了,存盘必然消耗IO。我们提倡的是高性能,这个方案直接不考虑。
二、问题分析
如果用BitMap思想来解决的话,就好很多,那么BitMap是怎么解决的啊,如下:
一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有,那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?具体如下图:
是不是很神奇,那么现在假如10亿的数据所需的空间就是3.72G/32了吧,一个占用32bit的数据现在只占用了1bit,节省了不少的空间,排序就更不用说了,一切显得那么顺利。这样的数据之间没有关联性,要是读取的,你可以用多线程的方式去读取。时间复杂度方面也是O(Max/n),其中Max为byte[]数组的大小,n为线程大小。
三、应用与代码
如果BitMap仅仅是这个特点,我觉得还不是它的优雅的地方,接下来继续欣赏它的魅力所在。下面的计算思想其实就是针对bit的逻辑运算得到,
类似这种逻辑运算的应用场景可以用于权限计算之中。
再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。
Index(N) = N/8 = N >> 3;
Position(N) = N%8 = N & 0x07;
(1) add(int num)
你要向bitmap里add数据该怎么办呢,不用担心,很简单,也很神奇。
上面已经分析了,add的目的是为了将所在的位置从0变成1.其他位置不变.
实例代码:
public void add(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
bits[arrayIndex] |= 1 << position;
}
(2) clear(int num)
对1进行左移,然后取反,最后与byte[index]作与操作。
实例代码:
public void clear(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
bits[arrayIndex] &= ~(1 << position);
}
(4) contain(int num)
实例代码:
public boolean contain(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
return (bits[arrayIndex] & (1 << position)) !=0;
}
全部代码如下:
package com.chs.alg.bitmap;
public class BitMap {
//保存数据的
private byte[] bits;
//能够存储多少数据
private int capacity;
public BitMap(int capacity){
this.capacity = capacity;
//1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8
bits = new byte[(capacity >>3 )+1];
}
public void add(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
bits[arrayIndex] |= 1 << position;
}
public boolean contain(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
return (bits[arrayIndex] & (1 << position)) !=0;
}
public void clear(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
bits[arrayIndex] &= ~(1 << position);
}
public static void main(String[] args) {
BitMap bitmap = new BitMap(100);
bitmap.add(7);
System.out.println("插入7成功");
boolean isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit);
bitmap.clear(7);
isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit);
}
}
最后
以上就是健康楼房为你收集整理的经典算法系列之(一) - BitMap [数据的压缩存储]的全部内容,希望文章能够帮你解决经典算法系列之(一) - BitMap [数据的压缩存储]所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复