我是靠谱客的博主 雪白发夹,最近开发中收集的这篇文章主要介绍DSA笔记,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

基本原理

密钥生成

  1. 选择一个合适的哈希函数,目前一般选择 SHA1,当前也可以选择强度更高的哈希函数 H。
  2. 选择密钥的长度 L 和 N,这两个值决定了签名的安全程度。在最初的 DSS( Digital Signature Standard )中建议 L 必须为 64 的倍数,并且 512 ≤ L ≤ 1024 512≤L≤1024 512L1024 ,当然,也可以更大。N 大小必须不大于哈希函数 H 输出的长度。FIPS 186-3 给出了一些建议的 L 和 N 的取值例子:(1024, 160), (2048, 224), (2048, 256),以及 (3,072, 256)。
  3. 选择 N 比特的素数 q。
  4. 选择 L 比特的素数 p,使得 p-1 是 q 的倍数。
  5. 选择满足 g k ≡ 1 m o d    p g^k≡1mod p gk1modp 的最小正整数 k 为 q 的 g,即在模 p 的背景下,ord(g)=q 的 g。即 g 在模 p 的意义下,其指数次幂可以生成具有 q 个元素的子群。这里,我们可以通过计算 g = h p − 1 q m o d    p g=h^{frac{p−1}{q}}mod p g=hqp1modp 来得到 g,其中 1<h<p−1 。
  6. 选择私钥 x, 0<x<q ,计算 y ≡ g x m o d    p y≡g^xmod p ygxmodp ,公钥为 (p,q,g,y),私钥为 (x)。
    签名
    签名步骤如下
  7. 选择随机整数数 k 作为临时密钥, 0<k<q 。
  8. 计算 r ≡ ( g k m o d    p ) m o d    q r ≡ (g^kmod p)mod q r(gkmodp)modq
  9. 计算 s ≡ ( H ( m ) + x r ) k − 1 m o d    q s≡(H(m)+xr)k^{−1}mod q s(H(m)+xr)k1modq
    签名结果为 (r,s)。需要注意的是,这里与 Elgamal 很重要的不同是这里使用了哈希函数对消息进行了哈希处理。
    验证
    验证过程如下
  10. 计算辅助值, w = s − 1 m o d    q w=s^{−1}mod q w=s1modq
  11. 计算辅助值, u 1 = H ( m ) s − 1 m o d    q u_1=H(m)s^{−1}mod q u1=H(m)s1modq
  12. 计算辅助值, u 2 = r s − 1 m o d    q u2=rs^{-1}mod q u2=rs1modq
  13. 计算 v = ( g u 1 y u 2 m o d    p ) m o d    q v=(g^{u_1}y^{u_2}mod p)mod q v=(gu1yu2modp)modq
  14. 如果 v 与 r 相等,则校验成功。

正确性推导

首先,g 满足 g k ≡ 1 m o d    p g^k≡1mod p gk1modp 的最小正整数 k 为 q。所以 g q ≡ 1 m o d    p g^q≡1mod p gq1modp
所以 g x ≡ ( g x m o d    q ) m o d    p g^x≡(g^xmod q)mod p gx(gxmodq)modp 。进而
v = ( g u 1 y u 2 m o d    p ) m o d    q = g u 1 g x u 2 ≡ g H ( m ) s − 1 g x r s − 1 ≡ g ( H ( m ) + x r ) s − 1 ≡ g k v=(g^{u1}y^{u_2}mod p)mod q =g^{u_1}g^{xu_2}≡g^{H(m)s^{-1}}g^{xrs^{-1}}≡g^{(H(m)+xr)s^{-1}} ≡g^k v=(gu1yu2modp)modq=gu1gxu2gH(m)s1gxrs1g(H(m)+xr)s1gk

安全性

如果知道了随机密钥 k,那么我们就可以根据 s ≡ ( H ( m ) + x r ) k − 1 m o d    q s≡(H(m)+xr)k^{−1}mod q s(H(m)+xr)k1modq 计算私钥 d,几乎攻破了 DSA。
这里一般情况下,消息的 hash 值都会给出。
x ≡ r − 1 ( k s − H ( m ) ) m o d    q x≡r^{−1}(ks−H(m))mod q xr1(ksH(m))modq

题目

题目大部分都是基于上面那个式子进行各种数学关系推导,最后求x
DSA本身是基于离散岁数问题的困难性设计的,所以曾经尝试过用discrete_log但失败了

[Imaginaryctf round30]Easy DSA: The beginning

from Crypto.Util.Padding import pad
from Crypto.Util.number import isPrime, getPrime, long_to_bytes
from Crypto.Cipher import AES
from hashlib import sha256
from random import randrange
def gen_key():
p = 0
while not isPrime(p):
q = getPrime(300)
p = 2*q + 1
g = randrange(2, p)**2 % p
k = randrange(2, q)
x = randrange(2, q)
y = pow(g, x, p)
return p, q, g, x, y, k
def H(msg):
return int.from_bytes(sha256(msg).digest(), 'big')
def sign(m):
r = pow(g, k, p) % q
s = (H(m) + x*r) * pow(k, -1, q) % q
return r, s
def verify(m, r, s):
assert 0 < r < q and 0 < s < q
u = pow(s, -1, q)
v = pow(g, H(m) * u, p) * pow(y, r * u, p) % p % q
return v == r
flag = b"ictf{REDACTED}"
p, q, g, x, y, k = gen_key()
ms = b"jctf{powered_by_caffeine}", b"jctf{totally_real_flag}"
sigs = [sign(m) for m in ms]
assert all(verify(m, *sig) for m, sig in zip(ms, sigs))
aes = AES.new(long_to_bytes(x)[:16], AES.MODE_CBC, b''*16)
c = aes.encrypt(pad(flag, 16)).hex()

解析

1.根据题目我们首先将所求结果转化为求x
2.根据p我们可以先求出q
3.我们知道 s k = H ( m ) + x r m o d    p sk=H(m)+xr mod p sk=H(m)+xrmodp
4.题目已知 s , H ( m ) , r s,H(m),r s,H(m),r,也就是下面我们只用求出 k k k
5.通过已知的两组 s , m s,m s,m相减得到 k ( s 0 − s 1 ) = H ( m 0 ) − H ( m 1 ) ( 两次的 r , x 的值相同,同相减时抵消 ) k(s_0-s_1)=H(m_0)-H(m_1)(两次的r,x的值相同,同相减时抵消) k(s0s1)=H(m0)H(m1)(两次的r,x的值相同,同相减时抵消)
6.求出 k k k,直接求 x x x

from Crypto.Util.number import *
from hashlib import sha256
from Crypto.Cipher import AES
p = 2187927460624367866053138955407692648682473743053236246707558906253741042480006602164664427
g = 375559713231366027661456501312210678588547344177468345614581736759352578046940519482449005
y = 1485107098193369513854775432342726913250546508148678604594096036026212707003506931382110518
ms = (b'jctf{powered_by_caffeine}', b'jctf{totally_real_flag}')
sigs = [(584760320483109456978677291524162809623560744424005784846002481292183647634857441612413242, 43566017108108194938809536454030127793515021629016835721136006757000695802735201944729583), (584760320483109456978677291524162809623560744424005784846002481292183647634857441612413242, 587754055422977160798386807229397695762555861352726788417293238718373985110611538922057038)]
c = '614585db552484e4c81c4168afa8582bd975bfadd5edc8a4d1bf744c29a7d84f30cde5fe4b37f736af3f09480bcb626a'
q = (p-1)//2
hm = [int.from_bytes(sha256(ms[i]).digest(), 'big') for i in range(len(ms))]
r = [sigs[i][0] for i in range(len(sigs))]
s = [sigs[i][1] for i in range(len(sigs))]
k = (hm[0]-hm[1])*inverse(s[0]-s[1],q)
x = (s[0]*k-hm[0])*inverse(r[0],q)%q
aes = AES.new(long_to_bytes(x)[:16], AES.MODE_CBC, b''*16)
f = aes.decrypt(long_to_bytes(int(c,16)))
print(f.decode())

[Imaginaryctf round30]Easy DSA: Elated once.py

from Crypto.Util.Padding import pad
from Crypto.Util.number import isPrime, getPrime, long_to_bytes
from Crypto.Cipher import AES
from hashlib import sha256
from random import randrange
def H(msg):
return int.from_bytes(sha256(msg).digest(), 'big')
def gen_key():
p = 0
while not isPrime(p):
q = getPrime(300)
p = 2*q + 1
g = randrange(2, p)**2 % p
x = randrange(2, q)
y = pow(g, x, p)
return p, q, g, x, y
def gen_nonces():
a = randrange(2, q)
b = randrange(2, q)
k = 0
while 1:
k = (a*k + b) % q
yield k
def sign(m):
k = next(nonces)
r = pow(g, k, p) % q
s = (H(m) + x*r) * pow(k, -1, q) % q
return r, s
def verify(m, r, s):
assert 0 < r < q and 0 < s < q
u = pow(s, -1, q)
v = pow(g, H(m) * u, p) * pow(y, r * u, p) % p % q
return v == r
flag = b"ictf{REDACTED}"
p, q, g, x, y = gen_key()
nonces = gen_nonces()
ms = b'jctf{f4k3_f!4g_7h3_f1r57}', b'jctf{f4k3_f!4g_7h3_53c0nd}', b'jctf{f4k3_f!4g_7h3_7h1rd}'
sigs = [sign(m) for m in ms]
assert all(verify(m, *sig) for m, sig in zip(ms, sigs))
aes = AES.new(long_to_bytes(x)[:16], AES.MODE_CBC, b''*16)
c = aes.encrypt(pad(flag, 16)).hex()
print(f'{p = }n{g = }n{y = }n{ms = }n{sigs = }n{c = }')

解析

s = ( H ( m ) + x r ) ∗ k − 1 m o d    q ⇒ x = ( s k − H ( m ) ) ∗ r − 1 m o d    q s=(H(m)+xr)*k^{-1} mod q Rightarrow x =(sk-H(m))*r^{-1} mod q s=(H(m)+xr)k1modqx=(skH(m))r1modq
联立得到 s 1 r 1 − 1 k 1 − H ( m 1 ) ∗ r 1 − 1 ≡ s 2 r 2 − 1 k 2 − H ( m 2 ) ∗ r 2 − 1 ≡ s 3 r 3 − 1 k 3 − H ( m 3 ) ∗ r 3 − 1 ≡ x m o d    q s_1r_1^{-1}k_1-H(m_1)*r_1^{-1}equiv s_2r_2^{-1}k_2-H(m_2)*r_2^{-1}equiv s_3r_3^{-1}k_3-H(m_3)*r_3^{-1}equiv x mod q s1r11k1H(m1)r11s2r21k2H(m2)r21s3r31k3H(m3)r31xmodq
u i = s i r i − 1 , v i = − H ( m i ) r i − 1 u_i=s_ir_i^{-1},v_i=-H(m_i)r_i^{-1} ui=siri1,vi=H(mi)ri1
u 1 k 1 + v 1 ≡ u 2 k 2 + v 2 ≡ u 3 k 3 + v 3 ≡ x m o d    q u_1k_1+v_1 equiv u_2k_2+v_2 equiv u_3k_3+v_3 equiv x mod q u1k1+v1u2k2+v2u3k3+v3xmodq
k 1 = b , k 2 = ( a + 1 ) b , k 3 = ( a 2 + a + 1 ) b k_1 = b,k_2 = (a+1)b,k_3 = (a^2+a+1)b k1=b,k2=(a+1)b,k3=(a2+a+1)b
仅考虑mod q域下的得到 { u 1 b + v 1 = ( u 2 a + u 2 ) b + v 2 u 1 b + v 1 = ( u 3 a 2 + u 3 a + u 3 ) b + v 3 left{ begin{matrix} u_1b+v_1=(u_2a+u_2)b+v_2 \ u_1b+v_1=(u_3a^2+u_3a+u_3)b+v_3 end{matrix} right. {u1b+v1=(u2a+u2)b+v2u1b+v1=(u3a2+u3a+u3)b+v3
整理得 { v 1 − v 2 = ( u 2 a + u 2 − u 1 ) b v 1 − v 3 = ( u 3 a 2 + u 3 a + u 3 − u 1 ) b left{ begin{matrix} v_1-v_2=(u_2a+u_2-u_1)b \ v_1-v_3=(u_3a^2+u_3a+u_3-u_1)b end{matrix} right. {v1v2=(u2a+u2u1)bv1v3=(u3a2+u3a+u3u1)b
从而 ( v 1 − v 3 ) ( u 2 a + u 2 − u 1 ) = ( u 3 a 2 + u 3 a + u 3 − u 1 ) b ( u 2 a + u 2 − u 1 ) = ( u 3 a 2 + u 3 a + u 3 − u 1 ) ( v 1 − v 2 ) (v_1-v_3)(u_2a+u_2-u_1)=(u_3a^2+u_3a+u_3-u_1)b(u_2a+u_2-u_1)=(u_3a^2+u_3a+u_3-u_1)(v_1-v_2) (v1v3)(u2a+u2u1)=(u3a2+u3a+u3u1)b(u2a+u2u1)=(u3a2+u3a+u3u1)(v1v2)
( v 1 − v 3 ) u 2 a + ( v 1 − v 3 ) ( u 2 − u 1 ) = ( v 1 − v 2 ) u 3 a 2 + ( v 1 − v 2 ) u 3 a + ( u 3 − u 1 ) ( v 1 − v 2 ) (v_1-v_3)u_2a + (v_1-v_3)(u_2-u_1) =(v_1-v_2)u_3a^2+(v_1-v_2)u_3a+(u_3-u_1)(v_1-v_2) (v1v3)u2a+(v1v3)(u2u1)=(v1v2)u3a2+(v1v2)u3a+(u3u1)(v1v2)
( v 1 − v 2 ) u 3 a 2 + [ ( v 1 − v 2 ) u 3 − ( v 1 − v 3 ) u 2 ] a + [ ( u 3 − u 1 ) ( v 1 − v 2 ) − ( v 1 − v 3 ) ( u 2 − u 1 ) ] = 0 (v_1-v_2)u_3a^2+[(v_1-v_2)u_3-(v_1-v_3)u_2]a+[(u_3-u_1)(v_1-v_2)-(v_1-v_3)(u_2-u_1)]=0 (v1v2)u3a2+[(v1v2)u3(v1v3)u2]a+[(u3u1)(v1v2)(v1v3)(u2u1)]=0
设三个系数分别为 w 1 , w 2 , w 3 w_1,w_2,w_3 w1,w2,w3
下面只用求解 w 1 a 2 + w 2 a + w 3 = 0 m o d    q w_1a^2+w_2a+w_3=0 mod q w1a2+w2a+w3=0modq
求出a后 b = ( v 1 − v 2 ) ( u 2 a + u 2 − u 1 ) − 1 b=(v_1-v_2)(u_2a+u_2-u_1)^{-1} b=(v1v2)(u2a+u2u1)1
⇒ x = u 1 b + v 1 Rightarrow x = u_1b+v_1 x=u1b+v1

#sage
from Crypto.Util.number import *
from hashlib import sha256
from Crypto.Cipher import AES
def H(msg):
return int.from_bytes(sha256(msg).digest(), 'big')
p = 2418412161587048618911490514475907960012278945420538846001723790372197085472346428648374919
q = (p - 1) // 2
g = 2064228484934656182476030526252687681657855524182393204180796682805474532697783234019522938
y = 894978350337386203714743526086207453830598544444498469056621877210054843512079994718204008
ms = (b'jctf{f4k3_f!4g_7h3_f1r57}', b'jctf{f4k3_f!4g_7h3_53c0nd}', b'jctf{f4k3_f!4g_7h3_7h1rd}')
sigs = [(942248975683680318753150798164591935683431794761521087381578596465811760180113404300321118, 342812233069446068155480770741216218496427109436740920046532418711028275917065308430519273), (102001584770818641493080724572692756389337862746330230381962190229233871531362789283064508, 482354383195776716833349859090850583242412163611214463003633128285976770958780493119871011), (187377473811032611481162139226326301755478417757273410261128557099065854699728324076093828, 1171449558094661271371246349171199670184901923277811515634255397001853557943612820379515494)]
c = '4c76bd5dc8d57984526385d696fa0665e4c18f60b8593d42897aff792ec893d826c253646b9cb6875c91f2dfa25eedd4cc2936a3fe3174aa5b677a30ef965a7aa5dbf12c0c8234a73d0c5db5aea76644'
m = [H(i) for i in ms]
r = [i[0] for i in sigs]
s = [i[1] for i in sigs]
inv_r = [inverse(i,q) for i in r]
u = [s[i] * inv_r[i] % q for i in range(3)]
v = [-m[i] * inv_r[i] % q for i in range(3)]
w1 = (v[0]-v[1]) * u[2] % q
w2 = ((v[0]-v[1])*u[2] - (v[0]-v[2])*u[1]) % q
w3 = ((u[2]-u[0])*(v[0]-v[1]) - (v[0]-v[2])*(u[1]-u[0])) % q
R.<x> = Zmod(q)[]
f = w1*x^2 + w2*x +w3
roots = f.roots()
la = [int(i[0]) for i in roots]
for a in la:
b = inverse(u[1]*a+u[1]-u[0],q)*(v[0]-v[1]) % q
k = [b,(a*b+b)%q,((a*b+b)*a+b)%q]
x = (u[0]*b + v[0]) % q
aes = AES.new(long_to_bytes(x)[:16], AES.MODE_CBC, b''*16)
flag = aes.decrypt(long_to_bytes(int(c,16)))
print(flag)

offical solve

from Crypto.Util.Padding import unpad
from Crypto.Util.number import long_to_bytes
from Crypto.Cipher import AES
from hashlib import sha256
from sage.all import GF
def H(msg):
return int.from_bytes(sha256(msg).digest(), 'big')
def gen_nonces():wo
k = 0
while 1:
k = (a*k + b) % q
yield k
with open('out.txt', 'r') as file:
exec(file.read())
p: int
g: int
y: int
c: int
ms: list[bytes]
sigs: list[tuple[int, int]]
q = (p-1)//2
K = GF(q)['a,b,x']
a, b, x = K.gens()
polys = [s*k - H(m) - x*r for m, k, (r, s) in zip(ms, gen_nonces(), sigs)]
for sols in K.ideal(polys).variety():
X = int(sols[x])
aes = AES.new(long_to_bytes(X)[:16], AES.MODE_CBC, b''*16)
m = aes.decrypt(bytes.fromhex(c))
print(m)

最后

以上就是雪白发夹为你收集整理的DSA笔记的全部内容,希望文章能够帮你解决DSA笔记所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(71)

评论列表共有 0 条评论

立即
投稿
返回
顶部