我是靠谱客的博主 满意白猫,最近开发中收集的这篇文章主要介绍DDPG(6)_ddpg,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1、引用Python库

import gym
import tensorflow as tf
import numpy as np
from ou_noise import OUNoise
from critic_network import CriticNetwork 
from actor_network_bn import ActorNetwork
from replay_buffer import ReplayBuffer

2、定义参数

# Hyper Parameters:

REPLAY_BUFFER_SIZE = 1000000
REPLAY_START_SIZE = 10000
BATCH_SIZE = 64
GAMMA = 0.99

3、定义类

class DDPG:
    """docstring for DDPG"""
    def __init__(self, env):
        self.name = 'DDPG' # name for uploading results
        self.environment = env
        # Randomly initialize actor network and critic network
        # with both their target networks
        self.state_dim = env.observation_space.shape[0]

(以下函数均在类DDPG中定义)

3.1 初始化函数

    def __init__(self, env):
        self.name = 'DDPG' # name for uploading results
        self.environment = env
        # Randomly initialize actor network and critic network
        # with both their target networks
        self.state_dim = env.observation_space.shape[0]
        self.action_dim = env.action_space.shape[0]

        self.sess = tf.InteractiveSession()

        self.actor_network = ActorNetwork(self.sess,self.state_dim,self.action_dim)
        self.critic_network = CriticNetwork(self.sess,self.state_dim,self.action_dim)
        
        # initialize replay buffer
        self.replay_buffer = ReplayBuffer(REPLAY_BUFFER_SIZE)

        # Initialize a random process the Ornstein-Uhlenbeck process for action exploration
        self.exploration_noise = OUNoise(self.action_dim)

初始化了状态、动作的维度,actor_network,critic_network,经验池和ou-noise.

tf.InteractiveSession()

参考这里,在运行图的时候插入一些计算图,便于交互环境处理。

3.2 train()函数

    def train(self):
        #print "train step",self.time_step
        # Sample a random minibatch of N transitions from replay buffer
        minibatch = self.replay_buffer.get_batch(BATCH_SIZE)
        state_batch = np.asarray([data[0] for data in minibatch])
        action_batch = np.asarray([data[1] for data in minibatch])
        reward_batch = np.asarray([data[2] for data in minibatch])
        next_state_batch = np.asarray([data[3] for data in minibatch])
        done_batch = np.asarray([data[4] for data in minibatch])                          #从经验池中采样得到经验序列

        # for action_dim = 1
        action_batch = np.resize(action_batch,[BATCH_SIZE,self.action_dim])

        # Calculate y_batch
        
        next_action_batch = self.actor_network.target_actions(next_state_batch)
        q_value_batch = self.critic_network.target_q(next_state_batch,next_action_batch)#q值通过target_critic网络计算(确定性策略梯度))
        y_batch = []  
        for i in range(len(minibatch)): 
            if done_batch[i]:
                y_batch.append(reward_batch[i])
            else :
                y_batch.append(reward_batch[i] + GAMMA * q_value_batch[i])                 #通过经验池数据计算y值
        y_batch = np.resize(y_batch,[BATCH_SIZE,1])
        # Update critic by minimizing the loss L
        self.critic_network.train(y_batch,state_batch,action_batch)                        #通过最小化二次方误差调整critic网络

        # Update the actor policy using the sampled gradient:
        action_batch_for_gradients = self.actor_network.actions(state_batch)               #actor网络通过经验池中的state产生动作
        q_gradient_batch = self.critic_network.gradients(state_batch,action_batch_for_gradients)  #critic网络通过上述状态-动作对计算Q对于a的梯度

        self.actor_network.train(q_gradient_batch,state_batch)                             #通过梯度和state调整actor网络

        # Update the target networks
        self.actor_network.update_target()
        self.critic_network.update_target()                                                 #更新target网络

整个actor-critic的一次训练过程。(对照伪代码)

np.asarray

参考这里,将数据结构转化为ndarray.

np.resize

参考这里,对原始数组的维度进行修改并保留。

3.3 关于action

    def noise_action(self,state):
        # Select action a_t according to the current policy and exploration noise
        action = self.actor_network.action(state)
        return action+self.exploration_noise.noise()
返回一个带噪声(探索)的动作。随机性。(exploration_noise在前面定义了就是ou-noise)
    def action(self,state):
        action = self.actor_network.action(state)
        return action

返回一个不带噪声的动作。确定性。

3.4 perceive()函数

    def perceive(self,state,action,reward,next_state,done):
        # Store transition (s_t,a_t,r_t,s_{t+1}) in replay buffer
        self.replay_buffer.add(state,action,reward,next_state,done)

        # Store transitions to replay start size then start training
        if self.replay_buffer.count() >  REPLAY_START_SIZE:
            self.train()

        #if self.time_step % 10000 == 0:
            #self.actor_network.save_network(self.time_step)
            #self.critic_network.save_network(self.time_step)

        # Re-iniitialize the random process when an episode ends
        if done:
            self.exploration_noise.reset()
向经验池中存储数据,存满时开始训练。

最后

以上就是满意白猫为你收集整理的DDPG(6)_ddpg的全部内容,希望文章能够帮你解决DDPG(6)_ddpg所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部