我是靠谱客的博主 苗条耳机,最近开发中收集的这篇文章主要介绍【Redis】Redis分布式集群倾斜0、背景一、影响二、常见原因三、排查方式 四、如何避免,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

0、背景

对于分布式系统而言,整个集群处理请求的效率和存储容量,往往取决于集群中响应最慢或存储增长最快的节点。所以在系统设计和容量规划时,我们尽量保障集群中各节点的“数据和请求分布均衡“。但在实际生产系统中,出现数据容量和请求倾斜(类似Data Skew)问题是比较常见的。

示例:春节抽奖服务,业务评估峰值qps是2w,转化到redis集群为10w qps和5GB内存存储,部署5个分片每个分片1GB+2W qps的redis集群(包含预留容量)。结果活动开始时,才发现服务存在”热点key",请求严重倾斜, 峰值时的6w qps都集中到其中一个分片,导致这分片过载,整个抽奖服务雪崩。

redis分布式集群倾斜问题,主要分为两类:

1 数据存储容量倾斜,数据存储总是落到集群中少数节点;

2 qps请求倾斜,qps总是落到少数节点。

一、影响

倾斜问题对于redis这类纯内存和单线程服务影响较大,存在以下痛点:

  • qps集中到少数redis节点,引起少数节点过载,会拖垮整个服务,同时集群处理qps能力不具备可扩展性;

  • 数据容量倾斜,导致少数节点内存爆增,出现OOM Killer和集群存储容量不具备可扩展性;

  • 运维管理变复杂,类似监控告警内存使用量、QPS、连接数、redis cpu busy等值不便统一;

  • 因集群内其他节点资源不能被充分利用,导致redis服务器/容器资源利率低;

  • 增大自动化配置管理难度;单集群节点尽量统一参数配置;

二、常见原因

一般是系统设计时,键空间(keyspace)设计不合理:

  • 系统设计时,redis键空间(keyspace)设计不合理,出现”热点key",导致这类key所在节点qps过载,集群出现qps倾斜;

  • 系统存在大的集合key(hash,set,list等),导致大key所在节点的容量和QPS过载,集群出现qps和容量倾斜;

  • DBA在规划集群或扩容不当,导致数据槽(slot)数分配不均匀,导致容量和请求qps倾斜;

  • 系统大量使用Keys hash tags, 可能导致某些数据槽位的key数量多,集群集群出现qps和容量倾斜;

  • 工程师执行monitor这类命令,导致当前节点client输出缓冲区增大;used_memory_rss被撑大;导致节点内存容量增大,出现容量倾斜;

三、排查方式

3.1 排查节点热点Key,确定top commands

当集群因热点key导致集群qps倾斜,需快速定位热点key和top commands。可使用开源工具redis-faina,或有实时redis分析平台更好。

以下是使用redis-faina工具分析,可见两个前缀key的QPS占比基本各为50%, 明显热点key;也能看到auth命令的异常(top commands)。

3.2 系统是否使用较大的集合键 

系统使用大key导致集群节点容量或qps倾斜,比如一个5kw字段的hash key, 内存占用在近10GB,这个key所在slot的节点的内存容量或qps都很有可能倾斜。

这类集合key每次操作几个字段,很难从proxy或sdk发现key的大小。

可使用redis-cli --bigkeys 分析节点存在的大键。如果需全量分析,可使用redis-rdb-tools(https://github.com/sripathikrishnan/redis-rdb-tools) 对节点的RDB文件全量分析,通过结果size_in_bytes列得到大key的占用内存字节数。

示例使用redis-cli 进行抽样分析:

3.3  检查集群每个分片的数据槽分配是否均匀

下面以Redis Cluster集群为例确认集群中,每个节点负责的数据槽位(slots)和key个数。下面demo的部分实例存在不轻度“倾斜”但不严重,可考虑进行reblance。

 3.4 系统是否大量使用keys hash tags

在redis集群中,有些业务为达到多键的操作,会使用hash tags把某类key分配同一个分片,可能导致数据、qps都不均匀的问题。可使用scan扫描keyspace是否有使用hash tags的,或使用monitor,vc-redis-sniffer工具分析倾斜节点,是否大理包含有hash tag的key。

3.5 是否因为client output buffer异常,导致内存容量倾斜

确认是否有client出现output buffer使用量异常,引起内存过大的问题;比如执行monitor、keys命令或slave同步full sync时出现客户端输入缓冲区占用过大。

这类情况基本redis实例内存会快速增长,很快会出现回落。通过监测client输出缓冲区使用情况;分析见下面示例:

 四、如何避免

  • 系统设计redis集群键空间和query pattern时,应避免出现热点key, 如果有热点key逻辑,尽量打散分布不同的节点或添加程序本地缓存;

  • 系统设计redis集群键空间时,应避免使用大key,把key设计拆分打散;大key除了倾斜问题,对集群稳定性有严重影响;

  • redis集群部署和扩缩容处理,保证数据槽位分配平均;

  • 系统设计角度应避免使用keys hash tag;

  • 日常运维和系统中应避免直接使用keys,monitor等命令,导致输出缓冲区堆积;这类命令建议作rename处理;

  • 合量配置normal的client output buffer, 建议设置10mb,slave限制为1GB按需要临时调整(警示:和业务确认调整再修改,避免业务出错)

在实际生产业务场景中,大规模集群很难做到集群的完全均衡,只是尽量保证不出现严重倾斜问题。

最后

以上就是苗条耳机为你收集整理的【Redis】Redis分布式集群倾斜0、背景一、影响二、常见原因三、排查方式 四、如何避免的全部内容,希望文章能够帮你解决【Redis】Redis分布式集群倾斜0、背景一、影响二、常见原因三、排查方式 四、如何避免所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部