概述
#引言
ES的批量索引操作,可以把多条索引请求合成一次请求,每个请求可以指定不同的索引。当往ES中索引大量数据的时候,使用批量索引能够大大增加索引的数据。接下来让我们通过阅读批量索引的源码来揭开其神秘的面纱。
#索引请求的预处理
批量索引的入口位于TransportBulkAction#protected void doExecute(Task task, BulkRequest bulkRequest, ActionListener listener)
// 检查请求中是否含有 包含管道的所有请求(管道是5.0新增的,用于在索引前处理数据)
if (bulkRequest.hasIndexRequestsWithPipelines()) {
if (clusterService.localNode().isIngestNode()) { //1
// 根据管道对索引请求做处理,处理后继续走批量索引
processBulkIndexIngestRequest(task, bulkRequest, listener);//2
} else {
// 本节点不是Ingest节点,将请求发给下一个节点
ingestForwarder.forwardIngestRequest(BulkAction.INSTANCE, bulkRequest, listener);
}
return;
}
ES 5.0开始增加了IngestNode的概念,Ingest节点的作用是在实际索引之前,对文档进行预处理。它对索引请求或者批量索引请求进行拦截,对文档进行预处理,再将处理完毕的文档放回请求中,最后根据改变后的请求索引。
代码1: 是判断当前节点是否为ingest节点(可在elasticsearch.yml文件中配置node.ingest: false 来设置节点是否为ingest节点,默认为true)。
代码2 :如果当前节点是ingest节点,就根据定义好的管道对索引请求进行拦截处理,处理完后继续走批量索引。
代码3:如果当前节点不是ingest节点,将请求发给下一个ingest节点。
接下来进入processBulkIndexIngestRequest阅读
void processBulkIndexIngestRequest(Task task, BulkRequest original, ActionListener<BulkResponse> listener) {
long ingestStartTimeInNanos = System.nanoTime();
BulkRequestModifier bulkRequestModifier = new BulkRequestModifier(original);
//1
ingestService.getPipelineExecutionService().executeBulkRequest(() -> bulkRequestModifier, (indexRequest, exception) -> {
logger.debug((Supplier<?>) () -> new ParameterizedMessage("failed to execute pipeline [{}] for document [{}/{}/{}]",
indexRequest.getPipeline(), indexRequest.index(), indexRequest.type(), indexRequest.id()), exception);
bulkRequestModifier.markCurrentItemAsFailed(exception);
}, (exception) -> {
if (exception != null) {
logger.error("failed to execute pipeline for a bulk request", exception);
listener.onFailure(exception);
} else {
long ingestTookInMillis = TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - ingestStartTimeInNanos);
BulkRequest bulkRequest = bulkRequestModifier.getBulkRequest();
ActionListener<BulkResponse> actionListener = bulkRequestModifier.wrapActionListenerIfNeeded(ingestTookInMillis, listener);
if (bulkRequest.requests().isEmpty()) {
// at this stage, the transport bulk action can't deal with a bulk request with no requests,
// so we stop and send an empty response back to the client.
// (this will happen if pre-processing all items in the bulk failed)
actionListener.onResponse(new BulkResponse(new BulkItemResponse[0], 0));
} else {
doExecute(task, bulkRequest, actionListener);
}
}
});
}
这个方法主要就是executeBulkRequest,用于预处理文档,参数包含:批量索引请求,预处理失败的回调函数,预处理成功的回调函数。接着看executeBulkRequest
public void executeBulkRequest(Iterable<DocWriteRequest> actionRequests,
BiConsumer<IndexRequest, Exception> itemFailureHandler,
Consumer<Exception> completionHandler) {
threadPool.executor(ThreadPool.Names.BULK).execute(new AbstractRunnable() {
@Override
public void onFailure(Exception e) {
completionHandler.accept(e);
}
@Override
protected void doRun() throws Exception {
for (DocWriteRequest actionRequest : actionRequests) {
if ((actionRequest instanceof IndexRequest)) {
IndexRequest indexRequest = (IndexRequest) actionRequest;
if (Strings.hasText(indexRequest.getPipeline())) {
try {
innerExecute(indexRequest, getPipeline(indexRequest.getPipeline()));//1
//this shouldn't be needed here but we do it for consistency with index api
// which requires it to prevent double execution
indexRequest.setPipeline(null);//2
} catch (Exception e) {
itemFailureHandler.accept(indexRequest, e);
}
}
}
}
completionHandler.accept(null);
}
});
}
代码1:进行预处理需要指定具体的处理过程,而具体的处理过程就是pipeline定义的,getPipeline(indexRequest.getPipeline())用于获取pipeline。以下是定义pipeline的demo:
PUT _ingest/pipeline/my-pipeline-id
{
"description" : "describe pipeline",
"processors" : [
{
"set" : {
"field": "foo",
"value": "bar"
}
}
]
}
获取到pipeline作为参数传入innerExecute方法,开始预处理数据。
代码2:预处理完成后,需要给请求的pipeline置空,这样做的目的是为了不重复执行预处理:成功回调函数会再次调用doExecute,执行bulkRequest.hasIndexRequestsWithPipelines() 来查看是否有pipeline,这时候发现pipeline=null就不会再次执行预处理操作了。
当前节点的预处理到此结束,如果当前节点不是ingest节点,就转发给ingest节点
public void forwardIngestRequest(Action<?, ?, ?> action, ActionRequest request, ActionListener<?> listener) {
transportService.sendRequest(randomIngestNode(), action.name(), request,
new ActionListenerResponseHandler(listener, action::newResponse));
}
通过randomIngestNode 来选择请求转发的目标节点
private DiscoveryNode randomIngestNode() {
final DiscoveryNode[] nodes = ingestNodes;//1
if (nodes.length == 0) {
throw new IllegalStateException("There are no ingest nodes in this cluster, unable to forward request to an ingest node.");
}
return nodes[Math.floorMod(ingestNodeGenerator.incrementAndGet(), nodes.length)];//2
}
代码1:已经维护了一个ingest节点列表,如果这个列表为空就会抛异常
代码2:通过取模的方式来选择节点
#创建不存在的索引
if (needToCheck()) {//1
// Attempt to create all the indices that we're going to need during the bulk before we start.
// Step 1: collect all the indices in the request
final Set<String> indices = bulkRequest.requests.stream()//2
.map(DocWriteRequest::index)
.collect(Collectors.toSet());
/* Step 2: filter that to indices that don't exist and we can create. At the same time build a map of indices we can't create
* that we'll use when we try to run the requests. */
final Map<String, IndexNotFoundException> indicesThatCannotBeCreated = new HashMap<>();//3
Set<String> autoCreateIndices = new HashSet<>();
ClusterState state = clusterService.state();
for (String index : indices) {
boolean shouldAutoCreate;
try {
// 根据配置的action.auto_create_index
// index.mapper.dynamic 判断是否要自动创建索引
shouldAutoCreate = shouldAutoCreate(index, state);
} catch (IndexNotFoundException e) {
shouldAutoCreate = false;
indicesThatCannotBeCreated.put(index, e);
}
if (shouldAutoCreate) {
autoCreateIndices.add(index);
}
}
// Step 3: create all the indices that are missing, if there are any missing. start the bulk after all the creates come back.
if (autoCreateIndices.isEmpty()) {
executeBulk(task, bulkRequest, startTime, listener, responses, indicesThatCannotBeCreated);
} else {
final AtomicInteger counter = new AtomicInteger(autoCreateIndices.size());
for (String index : autoCreateIndices) {
//4
createIndex(index, bulkRequest.timeout(), new ActionListener<CreateIndexResponse>() {
@Override
public void onResponse(CreateIndexResponse result) {
if (counter.decrementAndGet() == 0) {
executeBulk(task, bulkRequest, startTime, listener, responses, indicesThatCannotBeCreated);
}
}
@Override
public void onFailure(Exception e) {
if (!(ExceptionsHelper.unwrapCause(e) instanceof ResourceAlreadyExistsException)) {
// fail all requests involving this index, if create didn't work
for (int i = 0; i < bulkRequest.requests.size(); i++) {
DocWriteRequest request = bulkRequest.requests.get(i);
if (request != null && setResponseFailureIfIndexMatches(responses, i, request, index, e)) {
bulkRequest.requests.set(i, null);
}
}
}
if (counter.decrementAndGet() == 0) {
executeBulk(task, bulkRequest, startTime, ActionListener.wrap(listener::onResponse, inner -> {
inner.addSuppressed(e);
listener.onFailure(inner);
}), responses, indicesThatCannotBeCreated);
}
}
});
}
}
}
代码1:首先要通过needToCheck 方法确定ES是否支持自动创建索引(可在配置文件中设置action.auto_create_index参数配置),如果不支持就不去创建索引,如果支持进入进一步的判断
代码2:获取请求中包含的所有索引
代码3:过滤出需要创建索引,且允许创建索引的索引:过滤条件主要看action.auto_create_index(是否允许自动创建索引),和index.mapper.dynamic(是否允许自动创建映射) 两个配置。只有即可以自动创建索引,又可以自动创建映射,且索引不存在,才能够创建索引。
代码4:开始创建索引
接下来就是调用executeBulk去执行批量索引操作。
void executeBulk(Task task, final BulkRequest bulkRequest, final long startTimeNanos, final ActionListener<BulkResponse> listener,
final AtomicArray<BulkItemResponse> responses, Map<String, IndexNotFoundException> indicesThatCannotBeCreated) {
new BulkOperation(task, bulkRequest, listener, responses, startTimeNanos, indicesThatCannotBeCreated).run();
}
创建BulkOperation对象实例,并且运行其dorun方法
@Override
protected void doRun() throws Exception {
final ClusterState clusterState = observer.setAndGetObservedState();
if (handleBlockExceptions(clusterState)) {
return;
}
final ConcreteIndices concreteIndices = new ConcreteIndices(clusterState, indexNameExpressionResolver);
MetaData metaData = clusterState.metaData();
for (int i = 0; i < bulkRequest.requests.size(); i++) {
DocWriteRequest docWriteRequest = bulkRequest.requests.get(i);
//the request can only be null because we set it to null in the previous step, so it gets ignored
if (docWriteRequest == null) {
continue;
}
// 排除索引关闭或者索引不存在的
if (addFailureIfIndexIsUnavailable(docWriteRequest, i, concreteIndices, metaData)) {
continue;
}
Index concreteIndex = concreteIndices.resolveIfAbsent(docWriteRequest);
try {
switch (docWriteRequest.opType()) {
case CREATE:
case INDEX:
IndexRequest indexRequest = (IndexRequest) docWriteRequest;
MappingMetaData mappingMd = null;
// 获取索引元数据
final IndexMetaData indexMetaData = metaData.index(concreteIndex);
if (indexMetaData != null) {
// 根据type获取映射
mappingMd = indexMetaData.mappingOrDefault(indexRequest.type());
}
indexRequest.resolveRouting(metaData);
// 生成_id 和时间戳
indexRequest.process(mappingMd, allowIdGeneration, concreteIndex.getName());
break;
case UPDATE:
TransportUpdateAction.resolveAndValidateRouting(metaData, concreteIndex.getName(), (UpdateRequest) docWriteRequest);
break;
case DELETE:
docWriteRequest.routing(metaData.resolveIndexRouting(docWriteRequest.parent(), docWriteRequest.routing(), docWriteRequest.index()));
// check if routing is required, if so, throw error if routing wasn't specified
if (docWriteRequest.routing() == null && metaData.routingRequired(concreteIndex.getName(), docWriteRequest.type())) {
throw new RoutingMissingException(concreteIndex.getName(), docWriteRequest.type(), docWriteRequest.id());
}
break;
default: throw new AssertionError("request type not supported: [" + docWriteRequest.opType() + "]");
}
} catch (ElasticsearchParseException | IllegalArgumentException | RoutingMissingException e) {
BulkItemResponse.Failure failure = new BulkItemResponse.Failure(concreteIndex.getName(), docWriteRequest.type(), docWriteRequest.id(), e);
BulkItemResponse bulkItemResponse = new BulkItemResponse(i, docWriteRequest.opType(), failure);
responses.set(i, bulkItemResponse);
// make sure the request gets never processed again
bulkRequest.requests.set(i, null);
}
}
// first, go over all the requests and create a ShardId -> Operations mapping
// 将请求根据路由分组
Map<ShardId, List<BulkItemRequest>> requestsByShard = new HashMap<>();
for (int i = 0; i < bulkRequest.requests.size(); i++) {
DocWriteRequest request = bulkRequest.requests.get(i);
if (request == null) {
continue;
}
String concreteIndex = concreteIndices.getConcreteIndex(request.index()).getName();
// 用路由字段的hash值取模的方式获取偏移量,路由字段为空则取id值
ShardId shardId = clusterService.operationRouting().indexShards(clusterState, concreteIndex, request.id(), request.routing()).shardId();
List<BulkItemRequest> shardRequests = requestsByShard.computeIfAbsent(shardId, shard -> new ArrayList<>());
shardRequests.add(new BulkItemRequest(i, request));
}
if (requestsByShard.isEmpty()) {
listener.onResponse(new BulkResponse(responses.toArray(new BulkItemResponse[responses.length()]), buildTookInMillis(startTimeNanos)));
return;
}
final AtomicInteger counter = new AtomicInteger(requestsByShard.size());
String nodeId = clusterService.localNode().getId();
for (Map.Entry<ShardId, List<BulkItemRequest>> entry : requestsByShard.entrySet()) {
final ShardId shardId = entry.getKey();
final List<BulkItemRequest> requests = entry.getValue();
BulkShardRequest bulkShardRequest = new BulkShardRequest(shardId, bulkRequest.getRefreshPolicy(),
requests.toArray(new BulkItemRequest[requests.size()]));
// 在写入文档之前要求多少分片可用,在这里做设置
bulkShardRequest.waitForActiveShards(bulkRequest.waitForActiveShards());
// 设置超时等待时间默认一分钟
bulkShardRequest.timeout(bulkRequest.timeout());
if (task != null) {
bulkShardRequest.setParentTask(nodeId, task.getId());
}
shardBulkAction.execute(bulkShardRequest, new ActionListener<BulkShardResponse>() {
@Override
public void onResponse(BulkShardResponse bulkShardResponse) {
for (BulkItemResponse bulkItemResponse : bulkShardResponse.getResponses()) {
// we may have no response if item failed
if (bulkItemResponse.getResponse() != null) {
bulkItemResponse.getResponse().setShardInfo(bulkShardResponse.getShardInfo());
}
responses.set(bulkItemResponse.getItemId(), bulkItemResponse);
}
if (counter.decrementAndGet() == 0) {
finishHim();
}
}
@Override
public void onFailure(Exception e) {
// create failures for all relevant requests
for (BulkItemRequest request : requests) {
final String indexName = concreteIndices.getConcreteIndex(request.index()).getName();
DocWriteRequest docWriteRequest = request.request();
responses.set(request.id(), new BulkItemResponse(request.id(), docWriteRequest.opType(),
new BulkItemResponse.Failure(indexName, docWriteRequest.type(), docWriteRequest.id(), e)));
}
if (counter.decrementAndGet() == 0) {
finishHim();
}
}
private void finishHim() {
listener.onResponse(new BulkResponse(responses.toArray(new BulkItemResponse[responses.length()]), buildTookInMillis(startTimeNanos)));
}
});
}
}
这里对索引请求的参数进一步做了预处理,并且根据路由参数,计算出请求的目标分片,按分片分组请求,挨个用 shardBulkAction.execute处理每组请求。
TransportShardBulkAction.execute -> Transport.execute -> requestFilterChain.proceed(task, actionName, request, listener) -> this.action.doExecute(task, request, listener) -> TransportReplicationAction.doExecute
由于TransportShardBulkAction 继承于TransportReplicationAction,因此最后执行的是TransportReplicationAction.doExecute。
@Override
protected void doExecute(Task task, Request request, ActionListener<Response> listener) {
new ReroutePhase((ReplicationTask) task, request, listener).run();
}
#请求的路由
继续执行ReroutePhase的doRun方法,将请求分发到各个路由节点
@Override
protected void doRun() {
setPhase(task, "routing");
final ClusterState state = observer.setAndGetObservedState();
if (handleBlockExceptions(state)) {
return;
}
// request does not have a shardId yet, we need to pass the concrete index to resolve shardId
final String concreteIndex = concreteIndex(state);
final IndexMetaData indexMetaData = state.metaData().index(concreteIndex);
if (indexMetaData == null) {
retry(new IndexNotFoundException(concreteIndex));
return;
}
if (indexMetaData.getState() == IndexMetaData.State.CLOSE) {
throw new IndexClosedException(indexMetaData.getIndex());
}
// resolve all derived request fields, so we can route and apply it
resolveRequest(state.metaData(), indexMetaData, request);
assert request.shardId() != null : "request shardId must be set in resolveRequest";
assert request.waitForActiveShards() != ActiveShardCount.DEFAULT : "request waitForActiveShards must be set in resolveRequest";
// 找到路由指向的主分片
final ShardRouting primary = primary(state);
if (retryIfUnavailable(state, primary)) {
return;
}
// 找到主分片所在的节点
final DiscoveryNode node = state.nodes().get(primary.currentNodeId());
if (primary.currentNodeId().equals(state.nodes().getLocalNodeId())) {
// 如果这个节点就是本节点
performLocalAction(state, primary, node, indexMetaData);
} else {
performRemoteAction(state, primary, node);
}
}
如果路由到本节点就执行performLocalAction,路由到其他节点就执行performRemoteAction,不过最终都要执行performAction
private void performLocalAction(ClusterState state, ShardRouting primary, DiscoveryNode node, IndexMetaData indexMetaData) {
setPhase(task, "waiting_on_primary");
if (logger.isTraceEnabled()) {
logger.trace("send action [{}] on primary [{}] for request [{}] with cluster state version [{}] to [{}] ",
transportPrimaryAction, request.shardId(), request, state.version(), primary.currentNodeId());
}
performAction(node, transportPrimaryAction, true,
new ConcreteShardRequest<>(request, primary.allocationId().getId(), indexMetaData.primaryTerm(primary.id()))); //1
}
private void performAction(final DiscoveryNode node, final String action, final boolean isPrimaryAction,
final TransportRequest requestToPerform) {
transportService.sendRequest(node, action, requestToPerform, transportOptions, new TransportResponseHandler<Response>() {
... });
}
代码1处显示请求由transportPrimaryAction处理,而处理的handler已经在TransportReplicationAction类的构造函数中注册
transportService.registerRequestHandler(transportPrimaryAction, () -> new ConcreteShardRequest<>(request), executor,
new PrimaryOperationTransportHandler());
即PrimaryOperationTransportHandler,由其messageReceived接收请求进行处理
@Override
public void messageReceived(ConcreteShardRequest<Request> request, TransportChannel channel, Task task) {
// incoming primary term can be 0 if request is coming from a < 5.6 node (relocated primary)
// just use as speculative term the one from the current cluster state, it's validated against the actual primary term
// within acquirePrimaryShardReference
final long primaryTerm;
if (request.primaryTerm > 0L) {
primaryTerm = request.primaryTerm;
} else {
ShardId shardId = request.request.shardId();
primaryTerm = clusterService.state().metaData().getIndexSafe(shardId.getIndex()).primaryTerm(shardId.id());
}
new AsyncPrimaryAction(request.request, request.targetAllocationID, primaryTerm, channel, (ReplicationTask) task).run();
}
#获取分片锁
在索引数据之前需要获取分片的操作锁,保证线程安全。
new AsyncPrimaryAction(request.request, request.targetAllocationID, primaryTerm, channel, (ReplicationTask) task).run(); ->
acquirePrimaryShardReference(request.shardId(), targetAllocationID, primaryTerm, this); ->
indexShard.acquirePrimaryOperationLock(onAcquired, executor);->
indexShardOperationsLock.acquire(onLockAcquired, executorOnDelay, false);->
onAcquired.onResponse(releasable);
获取锁成功后调用AsyncPrimaryAction的 onResponse
@Override
public void onResponse(PrimaryShardReference primaryShardReference) {
try {
if (primaryShardReference.isRelocated()) {
primaryShardReference.close(); // release shard operation lock as soon as possible
setPhase(replicationTask, "primary_delegation");
// delegate primary phase to relocation target
// it is safe to execute primary phase on relocation target as there are no more in-flight operations where primary
// phase is executed on local shard and all subsequent operations are executed on relocation target as primary phase.
final ShardRouting primary = primaryShardReference.routingEntry();
assert primary.relocating() : "indexShard is marked as relocated but routing isn't" + primary;
DiscoveryNode relocatingNode = clusterService.state().nodes().get(primary.relocatingNodeId());
if (relocatingNode != null && relocatingNode.getVersion().major > Version.CURRENT.major) {
// ES 6.x requires a primary context hand-off during primary relocation which is not implemented on ES 5.x,
// otherwise it might not be aware of a replica that finished recovery and became activated on the master before
// the new primary became in charge of replicating operations, as the cluster state with that in-sync information
// might not be applied yet on the primary relocation target before it would be in charge of replicating operations.
// This would mean that the new primary could advance the global checkpoint too quickly, not taking into account
// the newly in-sync replica.
// ES 6.x detects that the primary is relocating from a 5.x node, and activates the primary mode of the global
// checkpoint tracker only after activation of the relocation target, which means, however, that requests cannot
// be handled as long as the relocation target shard has not been activated.
throw new ReplicationOperation.RetryOnPrimaryException(request.shardId(),
"waiting for 6.x primary to be activated");
}
transportService.sendRequest(relocatingNode, transportPrimaryAction,
new ConcreteShardRequest<>(request, primary.allocationId().getRelocationId(), primaryTerm),
transportOptions,
new TransportChannelResponseHandler<Response>(logger, channel, "rerouting indexing to target primary " + primary,
TransportReplicationAction.this::newResponseInstance) {
@Override
public void handleResponse(Response response) {
setPhase(replicationTask, "finished");
super.handleResponse(response);
}
@Override
public void handleException(TransportException exp) {
setPhase(replicationTask, "finished");
super.handleException(exp);
}
});
} else {
setPhase(replicationTask, "primary");
final IndexMetaData indexMetaData = clusterService.state().getMetaData().index(request.shardId().getIndex());
final boolean executeOnReplicas = (indexMetaData == null) || shouldExecuteReplication(indexMetaData);
final ActionListener<Response> listener = createResponseListener(primaryShardReference);
createReplicatedOperation(request,
ActionListener.wrap(result -> result.respond(listener), listener::onFailure),
primaryShardReference, executeOnReplicas)
.execute();
}
} catch (Exception e) {
Releasables.closeWhileHandlingException(primaryShardReference); // release shard operation lock before responding to caller
onFailure(e);
}
}
#在分片上执行索引请求
如果分片被转移,就重新路由转发,如果还是在本节点,就直接执行。
public void execute() throws Exception {
final String activeShardCountFailure = checkActiveShardCount();
final ShardRouting primaryRouting = primary.routingEntry();
final ShardId primaryId = primaryRouting.shardId();
if (activeShardCountFailure != null) {
finishAsFailed(new UnavailableShardsException(primaryId,
"{} Timeout: [{}], request: [{}]", activeShardCountFailure, request.timeout(), request));
return;
}
totalShards.incrementAndGet();
pendingActions.incrementAndGet();
// 先在主分片上执行请求
primaryResult = primary.perform(request);
final ReplicaRequest replicaRequest = primaryResult.replicaRequest();
if (replicaRequest != null) {
if (logger.isTraceEnabled()) {
logger.trace("[{}] op [{}] completed on primary for request [{}]", primaryId, opType, request);
}
// we have to get a new state after successfully indexing into the primary in order to honour recovery semantics.
// we have to make sure that every operation indexed into the primary after recovery start will also be replicated
// to the recovery target. If we use an old cluster state, we may miss a relocation that has started since then.
ClusterState clusterState = clusterStateSupplier.get();
final List<ShardRouting> shards = getShards(primaryId, clusterState);
Set<String> inSyncAllocationIds = getInSyncAllocationIds(primaryId, clusterState);
markUnavailableShardsAsStale(replicaRequest, inSyncAllocationIds, shards);
// 请求发到副本上执行
performOnReplicas(replicaRequest, shards);
}
successfulShards.incrementAndGet();
decPendingAndFinishIfNeeded();
}
主分片执行请求成功后,请求再发到副本上执行。
我们看主分片的操作,副本上的操作与主分片流程大致一致。
perform -> TransportShardBulkAction.shardOperationOnPrimary
@Override
public WritePrimaryResult<BulkShardRequest, BulkShardResponse> shardOperationOnPrimary(
BulkShardRequest request, IndexShard primary) throws Exception {
final IndexMetaData metaData = primary.indexSettings().getIndexMetaData();
long[] preVersions = new long[request.items().length];
VersionType[] preVersionTypes = new VersionType[request.items().length];
Translog.Location location = null;
// 将批量请求逐个执行
for (int requestIndex = 0; requestIndex < request.items().length; requestIndex++) {
if (isAborted(request.items()[requestIndex].getPrimaryResponse()) == false) {
location = executeBulkItemRequest(metaData, primary, request, preVersions, preVersionTypes, location, requestIndex);
}
}
// 保存每个请求的结果
BulkItemResponse[] responses = new BulkItemResponse[request.items().length];
BulkItemRequest[] items = request.items();
for (int i = 0; i < items.length; i++) {
responses[i] = items[i].getPrimaryResponse();
}
BulkShardResponse response = new BulkShardResponse(request.shardId(), responses);
return new WritePrimaryResult<>(request, response, location, null, primary, logger);
}
将批量请求逐个执行,并且保存每个请求的结果
/** Executes bulk item requests and handles request execution exceptions */
private Translog.Location executeBulkItemRequest(IndexMetaData metaData, IndexShard primary,
BulkShardRequest request,
long[] preVersions, VersionType[] preVersionTypes,
Translog.Location location, int requestIndex) throws Exception {
final DocWriteRequest itemRequest = request.items()[requestIndex].request();
preVersions[requestIndex] = itemRequest.version();
preVersionTypes[requestIndex] = itemRequest.versionType();
DocWriteRequest.OpType opType = itemRequest.opType();
try {
// execute item request
final Engine.Result operationResult;
final DocWriteResponse response;
final BulkItemRequest replicaRequest;
switch (itemRequest.opType()) {
case CREATE:
case INDEX:
final IndexRequest indexRequest = (IndexRequest) itemRequest;
Engine.IndexResult indexResult = executeIndexRequestOnPrimary(indexRequest, primary, mappingUpdatedAction);
if (indexResult.hasFailure()) {
response = null;
} else {
// update the version on request so it will happen on the replicas
final long version = indexResult.getVersion();
indexRequest.version(version);
indexRequest.versionType(indexRequest.versionType().versionTypeForReplicationAndRecovery());
assert indexRequest.versionType().validateVersionForWrites(indexRequest.version());
response = new IndexResponse(primary.shardId(), indexRequest.type(), indexRequest.id(),
indexResult.getVersion(), indexResult.isCreated());
}
operationResult = indexResult;
replicaRequest = request.items()[requestIndex];
break;
case UPDATE:
... }
return location;
}
根据请求的类型具体执行,包括,新建,更新,删除,这里新建请求调用executeIndexRequestOnPrimary
public static Engine.IndexResult executeIndexRequestOnPrimary(IndexRequest request, IndexShard primary,
MappingUpdatedAction mappingUpdatedAction) throws Exception {
Engine.Index operation;
try {
operation = prepareIndexOperationOnPrimary(request, primary);
} catch (MapperParsingException | IllegalArgumentException e) {
return new Engine.IndexResult(e, request.version());
}
Mapping update = operation.parsedDoc().dynamicMappingsUpdate();
final ShardId shardId = primary.shardId();
if (update != null) {
// can throw timeout exception when updating mappings or ISE for attempting to update default mappings
// which are bubbled up
try {
mappingUpdatedAction.updateMappingOnMaster(shardId.getIndex(), request.type(), update);
} catch (IllegalArgumentException e) {
// throws IAE on conflicts merging dynamic mappings
return new Engine.IndexResult(e, request.version());
}
try {
operation = prepareIndexOperationOnPrimary(request, primary);
} catch (MapperParsingException | IllegalArgumentException e) {
return new Engine.IndexResult(e, request.version());
}
update = operation.parsedDoc().dynamicMappingsUpdate();
if (update != null) {
throw new ReplicationOperation.RetryOnPrimaryException(shardId,
"Dynamic mappings are not available on the node that holds the primary yet");
}
}
return primary.index(operation);
}
在真正索引数据之前需要更新一下映射,例如文档中可能会新增之前映射中没有的域,这时候就要更新映射,加入该域。
private Engine.IndexResult index(Engine engine, Engine.Index index) throws IOException {
active.set(true);
final Engine.IndexResult result;
index = indexingOperationListeners.preIndex(shardId, index);
try {
if (logger.isTraceEnabled()) {
logger.trace("index [{}][{}] (v# [{}])", index.type(), index.id(), index.version());
}
result = engine.index(index);
} catch (Exception e) {
indexingOperationListeners.postIndex(shardId, index, e);
throw e;
}
indexingOperationListeners.postIndex(shardId, index, result);
return result;
}
创建索引引擎去向索引添加文档,该引擎封装了对lucene的调用。
#总结
批量索引的过程主要有如下:
- 利用管道对请求做预处理(5.X新增特性)
- 校验索引,并且创建不存在的索引
- 将请求路由到各个目标节点
- 获取锁
- 通过调用Lucene接口执行请求。
ES批量索引的源码解析就到这里,具体lucene的源码,之后将另外解析。
最后
以上就是高大刺猬为你收集整理的ES5.6.4源码解析--批量索引bulk的全部内容,希望文章能够帮你解决ES5.6.4源码解析--批量索引bulk所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复