概述
目录
1、简述
2、Gpiolib 相关数据结构分析
2.1 gpio_chip 结构
2.2 gpio_desc 结构
2.3 gpio_device 结构
3 Gpiolib 对接芯片底层
3.1 注册 GPIO 资源(gpiochip_add_data)
3.2 part1
3.2 part 2
3.3 part 3
4、Gpiolib 为其他驱动提供的 APIs
参考文章:GPIO子系统 - 蜗窝科技
1、简述
GPIO 资源是相对来说较为简单,而且比较通用(比如 LED 灯),而 Linux 的 GPIO 驱动属于 Linux Driver 中较为容易上手的部分,但是简单归简单,在 Linux 系统中,要使用 GPIO 资源,还是需要了解一些内容。
Linux Kernel 中对 GPIO 资源进行了抽象,抽象出一个叫做 Gpiolib 的东东,这个东东作为 GPIO 资源的管理核心存在:
中间层是 Gpiolib,用于管理系统中的 GPIO。Gpiolib 汇总了 GPIO 的通用操作,根据 GPIO 的特性,Gpiolib 对上(其他 Drivers)提供的一套统一通用的操作 GPIO 的软件接口,屏蔽了不同芯片的具体实现。对下,Gpiolib 提供了针对不同芯片操作的一套 framework,针对不同芯片,只需要实现 Specific Chip Driver ,然后使用 Gpiolib 提供的注册函数,将其挂接到 Gpiolib 上,这样就完成了这一套东西。
对于其他驱动来说,比如 LED 灯驱动,就需要用到通用的 Gpiolib 的函数来进行 I/O 口的操作。
2、Gpiolib 相关数据结构分析
先分析数据结构,Gpiolib 其实就是围绕几个数据结构在做文章,数据结构以及抽象层次清楚了,代码自然很快。
数据结构主要定义在 include/linux/gpio/driver.h 和 /drivers/gpio/gpiolib.h 中
首先看一个数据结构,叫 struct gpio_chip (include/linux/gpio/driver.h):
/**
* struct gpio_chip - abstract a GPIO controller
* @label: a functional name for the GPIO device, such as a part
* number or the name of the SoC IP-block implementing it.
* @gpiodev: the internal state holder, opaque struct
* @parent: optional parent device providing the GPIOs
* @owner: helps prevent removal of modules exporting active GPIOs
* @request: optional hook for chip-specific activation, such as
* enabling module power and clock; may sleep
* @free: optional hook for chip-specific deactivation, such as
* disabling module power and clock; may sleep
* @get_direction: returns direction for signal "offset", 0=out, 1=in,
* (same as GPIOF_DIR_XXX), or negative error
* @direction_input: configures signal "offset" as input, or returns error
* @direction_output: configures signal "offset" as output, or returns error
* @get: returns value for signal "offset", 0=low, 1=high, or negative error
* @set: assigns output value for signal "offset"
* @set_multiple: assigns output values for multiple signals defined by "mask"
* @set_config: optional hook for all kinds of settings. Uses the same
* packed config format as generic pinconf.
* @to_irq: optional hook supporting non-static gpio_to_irq() mappings;
* implementation may not sleep
* @dbg_show: optional routine to show contents in debugfs; default code
* will be used when this is omitted, but custom code can show extra
* state (such as pullup/pulldown configuration).
* @base: identifies the first GPIO number handled by this chip;
* or, if negative during registration, requests dynamic ID allocation.
* DEPRECATION: providing anything non-negative and nailing the base
* offset of GPIO chips is deprecated. Please pass -1 as base to
* let gpiolib select the chip base in all possible cases. We want to
* get rid of the static GPIO number space in the long run.
* @ngpio: the number of GPIOs handled by this controller; the last GPIO
* handled is (base + ngpio - 1).
* @names: if set, must be an array of strings to use as alternative
* names for the GPIOs in this chip. Any entry in the array
* may be NULL if there is no alias for the GPIO, however the
* array must be @ngpio entries long. A name can include a single printk
* format specifier for an unsigned int. It is substituted by the actual
* number of the gpio.
* @can_sleep: flag must be set iff get()/set() methods sleep, as they
* must while accessing GPIO expander chips over I2C or SPI. This
* implies that if the chip supports IRQs, these IRQs need to be threaded
* as the chip access may sleep when e.g. reading out the IRQ status
* registers.
* @read_reg: reader function for generic GPIO
* @write_reg: writer function for generic GPIO
* @pin2mask: some generic GPIO controllers work with the big-endian bits
* notation, e.g. in a 8-bits register, GPIO7 is the least significant
* bit. This callback assigns the right bit mask.
* @reg_dat: data (in) register for generic GPIO
* @reg_set: output set register (out=high) for generic GPIO
* @reg_clr: output clear register (out=low) for generic GPIO
* @reg_dir: direction setting register for generic GPIO
* @bgpio_bits: number of register bits used for a generic GPIO i.e.
* <register width> * 8
* @bgpio_lock: used to lock chip->bgpio_data. Also, this is needed to keep
* shadowed and real data registers writes together.
* @bgpio_data: shadowed data register for generic GPIO to clear/set bits
* safely.
* @bgpio_dir: shadowed direction register for generic GPIO to clear/set
* direction safely.
* @irqchip: GPIO IRQ chip impl, provided by GPIO driver
* @irqdomain: Interrupt translation domain; responsible for mapping
* between GPIO hwirq number and linux irq number
* @irq_base: first linux IRQ number assigned to GPIO IRQ chip (deprecated)
* @irq_handler: the irq handler to use (often a predefined irq core function)
* for GPIO IRQs, provided by GPIO driver
* @irq_default_type: default IRQ triggering type applied during GPIO driver
* initialization, provided by GPIO driver
* @irq_chained_parent: GPIO IRQ chip parent/bank linux irq number,
* provided by GPIO driver for chained interrupt (not for nested
* interrupts).
* @irq_nested: True if set the interrupt handling is nested.
* @irq_need_valid_mask: If set core allocates @irq_valid_mask with all
* bits set to one
* @irq_valid_mask: If not %NULL holds bitmask of GPIOs which are valid to
* be included in IRQ domain of the chip
* @lock_key: per GPIO IRQ chip lockdep class
*
* A gpio_chip can help platforms abstract various sources of GPIOs so
* they can all be accessed through a common programing interface.
* Example sources would be SOC controllers, FPGAs, multifunction
* chips, dedicated GPIO expanders, and so on.
*
* Each chip controls a number of signals, identified in method calls
* by "offset" values in the range 0..(@ngpio - 1). When those signals
* are referenced through calls like gpio_get_value(gpio), the offset
* is calculated by subtracting @base from the gpio number.
*/
struct gpio_chip {
const char *label;
struct gpio_device *gpiodev;
struct device *parent;
struct module *owner;
int (*request)(struct gpio_chip *chip,
unsigned offset);
void (*free)(struct gpio_chip *chip,
unsigned offset);
int (*get_direction)(struct gpio_chip *chip,
unsigned offset);
int (*direction_input)(struct gpio_chip *chip,
unsigned offset);
int (*direction_output)(struct gpio_chip *chip,
unsigned offset, int value);
int (*get)(struct gpio_chip *chip,
unsigned offset);
void (*set)(struct gpio_chip *chip,
unsigned offset, int value);
void (*set_multiple)(struct gpio_chip *chip,
unsigned long *mask,
unsigned long *bits);
int (*set_config)(struct gpio_chip *chip,
unsigned offset,
unsigned long config);
int (*to_irq)(struct gpio_chip *chip,
unsigned offset);
void (*dbg_show)(struct seq_file *s,
struct gpio_chip *chip);
int base;
u16 ngpio;
const char *const *names;
bool can_sleep;
#if IS_ENABLED(CONFIG_GPIO_GENERIC)
unsigned long (*read_reg)(void __iomem *reg);
void (*write_reg)(void __iomem *reg, unsigned long data);
unsigned long (*pin2mask)(struct gpio_chip *gc, unsigned int pin);
void __iomem *reg_dat;
void __iomem *reg_set;
void __iomem *reg_clr;
void __iomem *reg_dir;
int bgpio_bits;
spinlock_t bgpio_lock;
unsigned long bgpio_data;
unsigned long bgpio_dir;
#endif
#ifdef CONFIG_GPIOLIB_IRQCHIP
/*
* With CONFIG_GPIOLIB_IRQCHIP we get an irqchip inside the gpiolib
* to handle IRQs for most practical cases.
*/
struct irq_chip *irqchip;
struct irq_domain *irqdomain;
unsigned int irq_base;
irq_flow_handler_t irq_handler;
unsigned int irq_default_type;
unsigned int irq_chained_parent;
bool irq_nested;
bool irq_need_valid_mask;
unsigned long *irq_valid_mask;
struct lock_class_key *lock_key;
#endif
#if defined(CONFIG_OF_GPIO)
/*
* If CONFIG_OF is enabled, then all GPIO controllers described in the
* device tree automatically may have an OF translation
*/
/**
* @of_node:
*
* Pointer to a device tree node representing this GPIO controller.
*/
struct device_node *of_node;
/**
* @of_gpio_n_cells:
*
* Number of cells used to form the GPIO specifier.
*/
unsigned int of_gpio_n_cells;
/**
* @of_xlate:
*
* Callback to translate a device tree GPIO specifier into a chip-
* relative GPIO number and flags.
*/
int (*of_xlate)(struct gpio_chip *gc,
const struct of_phandle_args *gpiospec, u32 *flags);
#endif
};
gpio_chip 这个数据结构一看,很多函数指针结构,明眼人秒懂,此结构是为了抽象 GPIO 的所有操作,同时适配不同芯片的一个 common 的结构,所以,这个结构是要开出去给其他芯片进行特定的操作赋值的,比如你是 Qcom 的芯片,那么你需要实现你的这些 gpio_chip 的内容。
2.1 gpio_chip 结构
一般的,在一个芯片中,针对所有的 I/O 口都会有配置,默认状态有些是 I/O 口全部默认 GPIO 输入(稳当)。一般芯片会提供管脚复用的功能(后期的 Linux 版本中,使用 pin control 来抽象),要使用 GPIO ,则首先需要配置他为 GPIO 功能,而不是其他的服用功能。
而针对 GPIO 呢,有一些通用的特性,比如设置 GPIO 的方向,读 GPIO 的电平(输入的时候),写 GPIO 的电平(输出的时候),GPIO 作为外部中断输入,等等。
gpio_chip 的抽象,其实是对 GPIO 一组 Bank 的抽象,通常在硬件上,一个芯片对 IO 口来说,分为了很多个 Bank,每个 Bank 分为了 N 组 GPIO。
比如:1 个 SoC 将 I/O 分为了 4 个 Bank:
Bank 1:GPIOA ~ GPIOB
Bank 2:GPIOC ~ GPIOD
Bank 3:GPIOE ~ GPIOF
Bank 4:GPIOG ~ GPIOH
然鹅,每个 Bank 都有 N 组寄存器来表示 GPIO 的操作,比如:
Bank 1 中,针对 GPIO A:
GPIOA_CFG 来表示对 GPIO A 的配置
GPIOA_PULL 来表示对 GPIO A 的上下拉的配置
GPIOA_DIR 来表示对 GPIO A 配置成为输入或者输出
GPIOA_DATA 来表示 GPIO A 设置为输出的时候设置为高低或者输入的时候读高低
当然,Bank 1 中 针对 GPIO B,也是一样的操作:
GPIOB_CFG 来表示对 GPIO B 的配置
GPIOB_PULL 来表示对 GPIO B 的上下拉的配置
GPIOB_DIR 来表示对 GPIO B 配置成为输入或者输出
GPIOB_DATA 来表示 GPIO B 设置为输出的时候设置为高低或者输入的时候读高低
上面说的是一个 Bank 的情况,那么芯片有好几个 Bank,所以它们都是类似的,这里不在赘述。
所以整体结构是如下所示(这里只是打个比方,有的芯片 Bank 很多,寄存器也很多):
Linux Driver Gpiolib 对他们的抽象,使用 gpio_chip 对应了一组 Bank 描述,比如 Bank ·1,用一个 gpio_chip 来抽象:
那么多个 Bank ,就用指针,或者数组来表示咯。当然这里可能说得有点不准确,gpio_chip 只是抽象了一组 Bank 的统一的接口而已。
那么对于一颗芯片底层来说,需要根据芯片手册 Datasheet,来实现这些结构的接口。
2.2 gpio_desc 结构
既然系统分为多个 Bank,每个 Bank 又由几组组成,那么每个 GPIO 实体就由一个 gpio_desc 来描述:
struct gpio_desc {
struct gpio_device *gdev;
unsigned long flags;
/* flag symbols are bit numbers */
#define FLAG_REQUESTED 0
#define FLAG_IS_OUT 1
#define FLAG_EXPORT 2 /* protected by sysfs_lock */
#define FLAG_SYSFS 3 /* exported via /sys/class/gpio/control */
#define FLAG_ACTIVE_LOW 6 /* value has active low */
#define FLAG_OPEN_DRAIN 7 /* Gpio is open drain type */
#define FLAG_OPEN_SOURCE 8 /* Gpio is open source type */
#define FLAG_USED_AS_IRQ 9 /* GPIO is connected to an IRQ */
#define FLAG_IS_HOGGED 11 /* GPIO is hogged */
#define FLAG_SLEEP_MAY_LOOSE_VALUE 12 /* GPIO may loose value in sleep */
/* Connection label */
const char *label;
/* Name of the GPIO */
const char *name;
};
这个结构比较简单,可以看到,他包含了一个 gpio_device 的结构和 flag,以及 lable 和 name;
gdev 指针指向了这个 gpio_desc 所属的 gpio_device(马上描述),flag 代表了这个 GPIO 的属性状态;
看起来 gpio_chip 和 gpio_desc 应该是包含关系,但是 Kernel 中并没有直接将其两个结构联系上,而是通过另外一个结构将其联系在一起,这个结构就是 gpio_device。
2.3 gpio_device 结构
gpio_device 应该算是大内总管了(最新的内核有,Linux 3 版本的内核没有这个),如果说 gpio_chip 是对一个 Bank 的 GPIO 的硬件的具体抽象的话,那么 gpio_device 就是软件层面上对一个 Bank 的 GPIO 进行管理的单元,它的数据结构是:
enum of_gpio_flags;
enum gpiod_flags;
enum gpio_lookup_flags;
struct acpi_device;
/**
* struct gpio_device - internal state container for GPIO devices
* @id: numerical ID number for the GPIO chip
* @dev: the GPIO device struct
* @chrdev: character device for the GPIO device
* @mockdev: class device used by the deprecated sysfs interface (may be
* NULL)
* @owner: helps prevent removal of modules exporting active GPIOs
* @chip: pointer to the corresponding gpiochip, holding static
* data for this device
* @descs: array of ngpio descriptors.
* @ngpio: the number of GPIO lines on this GPIO device, equal to the size
* of the @descs array.
* @base: GPIO base in the DEPRECATED global Linux GPIO numberspace, assigned
* at device creation time.
* @label: a descriptive name for the GPIO device, such as the part number
* or name of the IP component in a System on Chip.
* @data: per-instance data assigned by the driver
* @list: links gpio_device:s together for traversal
*
* This state container holds most of the runtime variable data
* for a GPIO device and can hold references and live on after the
* GPIO chip has been removed, if it is still being used from
* userspace.
*/
struct gpio_device {
int id;
struct device dev;
struct cdev chrdev;
struct device *mockdev;
struct module *owner;
struct gpio_chip *chip;
struct gpio_desc *descs;
int base;
u16 ngpio;
char *label;
void *data;
struct list_head list;
#ifdef CONFIG_PINCTRL
/*
* If CONFIG_PINCTRL is enabled, then gpio controllers can optionally
* describe the actual pin range which they serve in an SoC. This
* information would be used by pinctrl subsystem to configure
* corresponding pins for gpio usage.
*/
struct list_head pin_ranges;
#endif
};
在这个 gpio_device 结构中,包含了 gpio_chip(对接芯片的操作集),gpio_desc(一些 GPIO 的描述);这个结构贯穿了整个 Gpiolib,因为 gpio_device 代表的是一个 Bank,一般的 GPIO 有多个 Bank,所以 Kernel 中,对这 gpio_device 的组织是由一个 gpio_devices 的链表构成(此处是多个 device,所以后面加了 s),在 gpiolib.c:
LIST_HEAD(gpio_devices);
3 Gpiolib 对接芯片底层
先聊聊 Gpiolib 是怎么对接到底层实际的驱动的。在前面的 2.1 部分讲过,底层需要对接的,其实对接的部分只有那些通用的操作,其实也就是 gpio_chip 这个玩意,所以,对接底层的部分,主要关心的是这个结构体,并且对这个结构体进行赋值的过程。
在底层对接到 Gpiolib 的时候,主要是对 gpio_chip 进行实现,然后调用 gpiochip_add 的接口,向 Gpiolib 注册你的 GPIO 。
实现的过程,主要是根据芯片手册,实现对应的 GPIO 的操作,也就是说,把寄存器操作编程成为函数,对接到这个 gpio_chip 结构体上。
gpio_chip 结构体相关的成员进行了赋值,并最终调用到了 gpiochip_add_data或者devm_gpiochip_add_data函数,将其注册到了内核的 Gpiolib 子系统。大致的流程是这样的,一些细节,可能由于版本不一致,内容有细微区别。接下来我们看看这个注册 GPIO 的函数。
3.1 注册 GPIO 资源(gpiochip_add_data)
传入的结构是 gpio_chip,也就是一个 Bank 的描述,那么实际上, CPU 的 GPIO 控制器有多个 I/O Bank,那换句话说,需要 Kernel 管理的 GPIO Bank 的部分,都需要调用这个接口,注册进内核(当然,你也可以野蛮的 Bypass);
int gpiochip_add_data(struct gpio_chip *chip, void *data);
3.2 part1
这个函数分成几次来看,先是 part 1:
/**
* gpiochip_add_data() - register a gpio_chip
* @chip: the chip to register, with chip->base initialized
* @data: driver-private data associated with this chip
*
* Context: potentially before irqs will work
*
* When gpiochip_add_data() is called very early during boot, so that GPIOs
* can be freely used, the chip->parent device must be registered before
* the gpio framework's arch_initcall(). Otherwise sysfs initialization
* for GPIOs will fail rudely.
*
* gpiochip_add_data() must only be called after gpiolib initialization,
* ie after core_initcall().
*
* If chip->base is negative, this requests dynamic assignment of
* a range of valid GPIOs.
*
* Returns:
* A negative errno if the chip can't be registered, such as because the
* chip->base is invalid or already associated with a different chip.
* Otherwise it returns zero as a success code.
*/
int gpiochip_add_data(struct gpio_chip *chip, void *data)
{
unsigned long flags;
int status = 0;
unsigned i;
int base = chip->base;
struct gpio_device *gdev;
/*
* First: allocate and populate the internal stat container, and
* set up the struct device.
*/
gdev = kzalloc(sizeof(*gdev), GFP_KERNEL);
if (!gdev)
return -ENOMEM;
gdev->dev.bus = &gpio_bus_type;
gdev->chip = chip;
chip->gpiodev = gdev;
if (chip->parent) {
gdev->dev.parent = chip->parent;
gdev->dev.of_node = chip->parent->of_node;
}
#ifdef CONFIG_OF_GPIO
/* If the gpiochip has an assigned OF node this takes precedence */
if (chip->of_node)
gdev->dev.of_node = chip->of_node;
#endif
gdev->id = ida_simple_get(&gpio_ida, 0, 0, GFP_KERNEL);
if (gdev->id < 0) {
status = gdev->id;
goto err_free_gdev;
}
dev_set_name(&gdev->dev, "gpiochip%d", gdev->id);
device_initialize(&gdev->dev);
dev_set_drvdata(&gdev->dev, gdev);
if (chip->parent && chip->parent->driver)
gdev->owner = chip->parent->driver->owner;
else if (chip->owner)
/* TODO: remove chip->owner */
gdev->owner = chip->owner;
else
gdev->owner = THIS_MODULE;
.......................
part 1 end
.......................
}
part 1 中,因为传入的结构是 gpio_chip,他代表了是一个 Bank,但是并没有 gpio_device 的结构,所以,在这个函数中,首先分配一个 gpio_device 的结构,并将其结构体成员的 chip ,等等进行赋值,建立起相关的结构联系。
3.2 part 2
再看 part 2:
..............
part 2 start
..............
gdev->descs = kcalloc(chip->ngpio, sizeof(gdev->descs[0]), GFP_KERNEL);
if (!gdev->descs) {
status = -ENOMEM;
goto err_free_ida;
}
if (chip->ngpio == 0) {
chip_err(chip, "tried to insert a GPIO chip with zero linesn");
status = -EINVAL;
goto err_free_descs;
}
if (chip->label)
gdev->label = kstrdup(chip->label, GFP_KERNEL);
else
gdev->label = kstrdup("unknown", GFP_KERNEL);
if (!gdev->label) {
status = -ENOMEM;
goto err_free_descs;
}
gdev->ngpio = chip->ngpio;
gdev->data = data;
..............
part 2 end
..............
part 2 中,由于 1 个 Bank不仅仅只有一个 GPIO,所以 gpio_chip->ngpio 的结构表示了这个 Bank 一共的 GPIO 个数,每一个 GPIO 使用一个 gpio_desc 表示,所以,这里分配了 ngpio 个 descs;
3.3 part 3
.............
part 3 start
.............
spin_lock_irqsave(&gpio_lock, flags);
/*
* TODO: this allocates a Linux GPIO number base in the global
* GPIO numberspace for this chip. In the long run we want to
* get *rid* of this numberspace and use only descriptors, but
* it may be a pipe dream. It will not happen before we get rid
* of the sysfs interface anyways.
*/
if (base < 0) {
base = gpiochip_find_base(chip->ngpio);
if (base < 0) {
status = base;
spin_unlock_irqrestore(&gpio_lock, flags);
goto err_free_label;
}
/*
* TODO: it should not be necessary to reflect the assigned
* base outside of the GPIO subsystem. Go over drivers and
* see if anyone makes use of this, else drop this and assign
* a poison instead.
*/
chip->base = base;
}
gdev->base = base;
status = gpiodev_add_to_list(gdev);
if (status) {
spin_unlock_irqrestore(&gpio_lock, flags);
goto err_free_label;
}
spin_unlock_irqrestore(&gpio_lock, flags);
for (i = 0; i < chip->ngpio; i++) {
struct gpio_desc *desc = &gdev->descs[i];
desc->gdev = gdev;
/* REVISIT: most hardware initializes GPIOs as inputs (often
* with pullups enabled) so power usage is minimized. Linux
* code should set the gpio direction first thing; but until
* it does, and in case chip->get_direction is not set, we may
* expose the wrong direction in sysfs.
*/
desc->flags = !chip->direction_input ? (1 << FLAG_IS_OUT) : 0;
}
#ifdef CONFIG_PINCTRL
INIT_LIST_HEAD(&gdev->pin_ranges);
#endif
status = gpiochip_set_desc_names(chip);
if (status)
goto err_remove_from_list;
status = gpiochip_irqchip_init_valid_mask(chip);
if (status)
goto err_remove_from_list;
status = of_gpiochip_add(chip);
if (status)
goto err_remove_chip;
acpi_gpiochip_add(chip);
/*
* By first adding the chardev, and then adding the device,
* we get a device node entry in sysfs under
* /sys/bus/gpio/devices/gpiochipN/dev that can be used for
* coldplug of device nodes and other udev business.
* We can do this only if gpiolib has been initialized.
* Otherwise, defer until later.
*/
if (gpiolib_initialized) {
status = gpiochip_setup_dev(gdev);
if (status)
goto err_remove_chip;
}
return 0;
err_remove_chip:
acpi_gpiochip_remove(chip);
gpiochip_free_hogs(chip);
of_gpiochip_remove(chip);
gpiochip_irqchip_free_valid_mask(chip);
err_remove_from_list:
spin_lock_irqsave(&gpio_lock, flags);
list_del(&gdev->list);
spin_unlock_irqrestore(&gpio_lock, flags);
err_free_label:
kfree(gdev->label);
err_free_descs:
kfree(gdev->descs);
err_free_ida:
ida_simple_remove(&gpio_ida, gdev->id);
err_free_gdev:
/* failures here can mean systems won't boot... */
pr_err("%s: GPIOs %d..%d (%s) failed to registern", __func__,
gdev->base, gdev->base + gdev->ngpio - 1,
chip->label ? : "generic");
kfree(gdev);
return status;
在 part 3 中,base 代表了每个 Bank 的编号,将其赋值;然后通过 gpiodev_add_to_list(gdev) 将这个 gdev 挂到全局的 gpio_devices :
/*
* Add a new chip to the global chips list, keeping the list of chips sorted
* by range(means [base, base + ngpio - 1]) order.
*
* Return -EBUSY if the new chip overlaps with some other chip's integer
* space.
*/
static int gpiodev_add_to_list(struct gpio_device *gdev)
{
struct gpio_device *prev, *next;
if (list_empty(&gpio_devices)) {
/* initial entry in list */
list_add_tail(&gdev->list, &gpio_devices);
return 0;
}
next = list_entry(gpio_devices.next, struct gpio_device, list);
if (gdev->base + gdev->ngpio <= next->base) {
/* add before first entry */
list_add(&gdev->list, &gpio_devices);
return 0;
}
prev = list_entry(gpio_devices.prev, struct gpio_device, list);
if (prev->base + prev->ngpio <= gdev->base) {
/* add behind last entry */
list_add_tail(&gdev->list, &gpio_devices);
return 0;
}
list_for_each_entry_safe(prev, next, &gpio_devices, list) {
/* at the end of the list */
if (&next->list == &gpio_devices)
break;
/* add between prev and next */
if (prev->base + prev->ngpio <= gdev->base
&& gdev->base + gdev->ngpio <= next->base) {
list_add(&gdev->list, &prev->list);
return 0;
}
}
dev_err(&gdev->dev, "GPIO integer space overlap, cannot add chipn");
return -EBUSY;
}
接着就是设置一些 name 字段,配置中断之类的,初始化每个 desc[] 结构的 flags,最后调用:
/*
* By first adding the chardev, and then adding the device,
* we get a device node entry in sysfs under
* /sys/bus/gpio/devices/gpiochipN/dev that can be used for
* coldplug of device nodes and other udev business.
* We can do this only if gpiolib has been initialized.
* Otherwise, defer until later.
*/
if (gpiolib_initialized) {
status = gpiochip_setup_dev(gdev);
if (status)
goto err_remove_chip;
}
然后,不出意外的话,返回 0;
这里说一下 gpiochip_setup_dev 调用,这个是在 Gpiolib init 的时候调用 gpiochip_setup_devs:
static int __init gpiolib_dev_init(void)
{
int ret;
/* Register GPIO sysfs bus */
ret = bus_register(&gpio_bus_type);
if (ret < 0) {
pr_err("gpiolib: could not register GPIO bus typen");
return ret;
}
ret = alloc_chrdev_region(&gpio_devt, 0, GPIO_DEV_MAX, "gpiochip");
if (ret < 0) {
pr_err("gpiolib: failed to allocate char dev regionn");
bus_unregister(&gpio_bus_type);
} else {
gpiolib_initialized = true;
gpiochip_setup_devs();
}
return ret;
}
core_initcall(gpiolib_dev_init);
而这个 gpiochip_setup_devs 对每一个 gpio_devicecs 节点调用:gpiochip_setup_dev:
static void gpiochip_setup_devs(void)
{
struct gpio_device *gdev;
int err;
list_for_each_entry(gdev, &gpio_devices, list) {
err = gpiochip_setup_dev(gdev);
if (err)
pr_err("%s: Failed to initialize gpio device (%d)n",
dev_name(&gdev->dev), err);
}
}
最后到:
static int gpiochip_setup_dev(struct gpio_device *gdev)
{
int status;
cdev_init(&gdev->chrdev, &gpio_fileops);
gdev->chrdev.owner = THIS_MODULE;
gdev->dev.devt = MKDEV(MAJOR(gpio_devt), gdev->id);
status = cdev_device_add(&gdev->chrdev, &gdev->dev);
if (status)
return status;
chip_dbg(gdev->chip, "added GPIO chardev (%d:%d)n",
MAJOR(gpio_devt), gdev->id);
status = gpiochip_sysfs_register(gdev);
if (status)
goto err_remove_device;
/* From this point, the .release() function cleans up gpio_device */
gdev->dev.release = gpiodevice_release;
pr_debug("%s: registered GPIOs %d to %d on device: %s (%s)n",
__func__, gdev->base, gdev->base + gdev->ngpio - 1,
dev_name(&gdev->dev), gdev->chip->label ? : "generic");
return 0;
err_remove_device:
cdev_device_del(&gdev->chrdev, &gdev->dev);
return status;
}
其实就是注册了字符设备,并且添加到了 sysfs;
从注释上看,因为不知道这个 init 和我们的对接底层的驱动的 init 谁先执行到,所以用了一个变量 gpiolib_initialized 来表示当前的 Gpiolib 是不是已经完成了相关的字符设备的注册,如果是 Gpiolib 先去 init 的话,那么 gpiolib_initialized ture,芯片对接底层的部分错过 gpio_chip setup 的机会,所以需要重新调用这个 gpiochip_setup_dev 接口,反之 OK;
到这里,对接底层驱动的部分基本上 OK 了,小伙伴们需要按照自己芯片的 Specific 去做自己的 gpio_chip 结构并最终通过 gpiochip_add_data 添加到 Gpiolib 子系统中;
还有一点需要注意到的是,小伙伴们需要自行定义一些结构,来获得并表示自己 Bank 的虚拟地址等等,这样才能操作到实际的硬件寄存器(后面文章具体分析一个gpio control);
4、Gpiolib 为其他驱动提供的 APIs
4.1 gpio_to_desc
4.2 gpiod_put
4.3 gpiod_direction_input
4.4 gpiod_direction_output
最后
以上就是重要草莓为你收集整理的Linux内核4.14版本——GPIO子系统(1)——gpiolib分析1、简述2、Gpiolib 相关数据结构分析 3 Gpiolib 对接芯片底层4、Gpiolib 为其他驱动提供的 APIs的全部内容,希望文章能够帮你解决Linux内核4.14版本——GPIO子系统(1)——gpiolib分析1、简述2、Gpiolib 相关数据结构分析 3 Gpiolib 对接芯片底层4、Gpiolib 为其他驱动提供的 APIs所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复